《相交线与平行线》全章复习与巩固(基础)知识讲解
【学习目标】
熟练掌握对顶角,余角,补角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;
2. 区别平行线的判定与性质,并能灵活运用;
3. 了解尺规作图的概念,熟练掌握用尺规作角或线段的方法.
【知识网络】
【要点梳理】
要点一、两条直线的位置关系
1.同一平面内两条直线的位置关系:相交与平行
要点诠释:
(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.
(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.
2.对顶角、补角、余角
(1)定义:
①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.
②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.
(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.
3.垂线
(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.
(2)垂线的性质:
①在同一平面内,过一点有且只有一条直线与已知直线垂直.
②垂线段最短.
(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
要点二、平行线的判定与性质
1.平行线的判定
判定方法1:同位角相等,两直线平行.
判定方法2:内错角相等,两直线平行.
判定方法3:同旁内角互补,两直线平行.
要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:
(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.
(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).
(3)在同一平面内,垂直于同一直线的两条直线平行.
(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.平行线的性质
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补.
要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:
(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.
(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.
3.两条平行线间的距离
如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.
要点诠释:
(1)两条平行线之间的距离处处相等.
(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.
(3)如何理解 “垂线段”与 “距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.
要点三、用尺规作线段和角
1.用尺规作线段
(1)用尺规作一条线段等于已知线段.
(2)用尺规作一条线段等于已知线段的倍数.
(3)用尺规作一条线段等于已知线段的和.
(4)用尺规作一条线段等于已知线段的差.
2.用尺规作角
(1)用尺规作一个角等于已知角.
(2)用尺规作一个角等于已知角的倍数.
(3)用尺规作一个角等于已知角的和.
(4)用尺规作一个角等于已知角的差.
【典型例题】
类型一、两条直线的位置关系
1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有 对,它们分别是 ,共有 对邻补角.
【思路点拨】根据邻补角定义和对顶角定义,每一个顶点处有四个角,可以组成四对邻补角和两对对顶角,而本题图形中,三个顶点重叠在一起,所以再乘以3即可.
【答案】6,∠AOC与∠BOD,∠AOF与∠BOE,∠COF与∠DOE, ∠BOC与∠AOD,∠BOF与∠AOE, ∠DOF与∠COE ,12.
【解析】找对顶角或邻补角,先从某一个角开始,顺时针或逆时针旋转,这样做,既不漏也不重.
【总结升华】两条直线相交得到的四个角中,共有2对对顶角,4对邻补角.
举一反三:
【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
【答案】
解: 因为∠BOC+∠AOC=180o(平角定义),
???? 所以∠AOC是∠BOC的补角.
??? ?因为∠AOD+∠BOD=180o(平角定义),
??? ?∠AOD=∠BOC(已知),
?? ??所以∠BOC+∠BOD=180o.
???所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
而∠BOC的邻补角只有一个∠AOC,且∠BOC没有对顶角.
2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求∠4的度数.
【答案与解析】
解:∵a⊥b,
∴∠2=∠1=90°.
又∵∠1=2∠3,∴90°=2∠3,∴∠3=45°,
又∠3与∠4互为邻补角,
所以∠3+∠4=180°即45°+∠4=180°.
所以∠4=135°.
【总结升华】涉及到角的运算时,充分利用已知条件和隐含条件(平角、余角、补角、对顶角等)是解题的关键.
类型二、平行线的性质与判定
3.如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:
因为EF∥AD,所以∠2= ( )
又因为∠1=∠2,所以∠1=∠3
所以AB∥ ( )
所以∠BAC+ =180°( )
因为∠BAC=70°,所以∠AGD= .
【答案】∠3,两直线平行,同位角相等;DG,内错角相等,两直线平行;∠AGD,两直线平行,同旁内角互补;110°.
【解析】首先由已知EF∥AD根据两直线平行同位角相等可得∠2=∠3,再由∠1=∠2,利用等量代换可得∠1=∠3,根据内错角相等,两直线平行可得AB∥DG,再根据两直线平行同旁内角互补可得∠BAC+∠AGD=180°,进而得到答案.
【总结升华】本题主要考查的是平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.此外注意证明题规范的书写格式.
举一反三:
【变式】如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.
【答案】
解:平行,理由如下:
因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),
所以∠1=∠BCD(两直线平行,内错角相等).
又因为∠1=∠2(已知),
所以∠BCD=∠2.
所以CD∥FG(同位角相等,两直线平行).
4.(2019春?杭州期末)如图,已知BC∥GE,AF∥DE,∠1=50°.
(1)求∠AFG的度数;
(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.
【答案与解析】解:(1)∵BC∥EG,
∴∠E=∠1=50°.
∵AF∥DE,
∴∠AFG=∠E=50°;
(2)作AM∥BC,
∵BC∥EG,
∴AM∥EG,
∴∠AFM=∠AFG=50°.
∵AM∥BC,
∴∠QAM=∠Q=15°,
∴∠FA Q=∠AFM+∠FAQ=65°.
∵AQ平分∠FAC,
∴∠QAC=∠FA Q=65°,
∴∠M AC=∠QAC+∠QAM=80°.
∵AM∥BC,
∴∠ACB=∠MAC=80°.
【总结升华】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.
类型三、用尺规作线段和角
5. 在如图中,补充作图:(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);(2)CP与AB会平行吗?为什么?
【思路点拨】
(1)根据作一个角等于已知角的方法即可作出;(2)根据平行线的判定方法即可判断.
【答案与解析】
解:(1)作图如下:
(2)会平行.用同位角相等,两直线平行.
【总结升华】本题考查了基本作图:作一个角等于已知角,以及平行线的判定定理,正确掌握基本作图是关键.
举一反三:
【变式】(2019秋?娄底期中)尺规作图的画图工具是( )
A.刻度尺、量角器 B.三角板、量角器
C.直尺、量角器 D.没有刻度的直尺和圆规
【答案】D
提示:尺规作图的画图工具是没有刻度的直尺和圆规.
类型四、实际应用
6.如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?
【答案与解析】
解:如图,过点M作MN⊥,垂足为N,欲使通道最短,应沿线路MN施工.
【总结升华】灵活运用垂线段最短的性质是解答此类问题的关键.
《相交线与平行线》全章复习与巩固(基础)巩固练习
【巩固练习】
一、选择题
1.下列图中,∠1和∠2是对顶角的有( )个. A.1个 B.2个 C.3个 D.4个
2.如图所示是同位角关系的是( ).
A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在
3.下列说法正确的是( ).
A.相等的角是对顶角.
B.两条直线被第三条直线所截,内错角相等.
C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
D.若两个角的和为180°,则这两个角互为余角.
4.(2019?宜昌)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
5.用尺规作图,已知三边作三角形,用到的基本作图是( ).
A.作一个角等于已知角
B.作已知直线的垂线
C.作一条线段等于已知线段
D.作角的平分线
6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于( ).
A.75° B.105° C.45° D.135°
7.下列说法中,正确的是( ).
A.过点P画线段AB的垂线.
B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.
C.过一点有且只有一条直线垂直于已知直线.
D.过一点有且只有一条直线平行于已知直线.
8.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ) .
A. 50° B. 60° C.70° D.80°
二、填空题
9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.
10.如图所示,已知BC∥DE,则∠ACB+∠AOE= .
11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.
12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是:
①:________ ②:________ ③:________
13.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD= ,∠AOC= ,∠BOC= .
15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .
16.(2019秋?丰台区期末)阅读下面材料:
在数学课上,老师提出如下问题:
小聪、小明、小敏三位同学在黑板上分别画出了设计方案:
根据以上信息,你认为 同学的方案最节省材料,理由是 .
三、解答题
17.如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.
18.(2019春?监利县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.
(1)求证:AD∥BC;
(2)若∠1=36°,求∠2的度数.
19. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.
20.如图所示,点P是∠ABC内一点.
(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.
(2)∠EPF等于∠B吗? 为什么?
【答案与解析】
一、选择题
1. 【答案】A;
【解析】只有第三个图中的∠1与∠2是对顶角.
2. 【答案】B;
【解析】同位角的特征:在截线同旁,在两条被截直线同一方向上.
3. 【答案】C;
【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.
4. 【答案】C;
【解析】∵FE⊥DB,
∴∠DEF=90°.
∵∠1=50°,
∴∠D=90°﹣50°=40°.
∵AB∥CD,
∴∠2=∠D=40°.故选C.
5. 【答案】C;
【解析】根据三边做三角形用到的基本作图是:作一条线段等于已知线段.故选C.
6. 【答案】C;
【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.
7.【答案】C;
【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.
8.【答案】A;
【解析】平行线的判定与性质综合应用.
二、填空题
9. 【答案】50°;
【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.
10.【答案】180°;
【解析】由BC∥DE可知∠ACB=∠EOC,又因为∠AOE+∠EOC=180°,故可得解.
11.【答案】向西,750米 ;
【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度.
12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;
【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.
13.【答案】90°;
【解析】∠BAC+∠ACD=180°,°,即∠1+∠2=90°.
14.【答案】115°,115°,65°;
【解析】邻补角或对顶角的性质进行求解.
15.【答案】48°;
【解析】内错角相等,两直线平行.
16.【答案】小聪;两点之间线段最短;点到直线垂线段最短;
【解析】小明与小聪的方案比较:
在小明的方案中∵AD+BD>AB,
∴小聪的方案比小明的节省材料;
小聪与小敏的方案比较:
小聪方案中AC<小敏的方案中AC
∴小聪同学的方案最节省材料,
理由:两点之间线段最短;点到直线垂线段最短.
三、解答题
17.【解析】
解:因为∠2=∠3(对顶角相等),∠3=40°(已知),
所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),
所以∠1=90°-∠2=50°.
18.【解析】
(1)证明:∵∠ABC=180°﹣∠A,
∴∠ABC+∠A=180°,
∴AD∥BC;
(2)解:∵AD∥BC,∠1=36°,
∴∠3=∠1=36°,
∵BD⊥CD,EF⊥CD,
∴BD∥EF,
∴∠2=∠3=36°.
19.【解析】
解:因为∠1=50°,∠2=130°(已知),
所以∠1+∠2=180°.
所以a∥b(同旁内角互补,两直线平行).
所以∠3=∠1=50°(两直线平行,同位角相等).
又因为∠4=50°(已知),
所以∠3=∠4(等量代换).
所以d∥e(同位角相等,两直线平行).
因为∠5+∠6=180°(平角定义),∠6=130°(已知),
所以∠5=50°(等式的性质).
所以∠4=∠5(等量代换).
所以b∥c(内错角相等,两直线平行).
因为a∥b,b∥c(已知),
所以a∥c(平行于同一直线的两直线平行).
20.【解析】
解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.
(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).