第二章方程与不等式式第11节 分式方程及应用
■知识点一:分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有_______的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为__ __.21教育网
3. 增根:使分式方程 的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__ __方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__ __,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.www-2-1-cnjy-com
5 用换元法解分式方程的一般步骤:
① 设 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把 代入原设中,求出原未知数的值;④ 检验作答.21*cnjy*com
■知识点二:列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、_______、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是 ;二是检验所求的解是否__ __.【来源:21cnj*y.co*m】
■考点1.分式方程的概念、解法
◇典例:
(2019年四川省成都市)分式方程+=1的解为( )
A.x=﹣1 B.x=1 C.x=2 D.x=﹣2
【考点】解分式方程
【分析】先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.
解:方程两边同时乘以x(x﹣1)得,x(x﹣5)+2(x﹣1)=x(x﹣1),
解得x=﹣1,
把x=﹣1代入原方程的分母均不为0,
故x=﹣1是原方程的解.
故选:A.
【点评】此题主要考查了解分式方程,注意,解分式方程时需要验根.
(2019年四川省巴中市)若关于x的分式方程+=2m有增根,则m的值为 .
【考点】分式方程的增根
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)
∵原方程有增根,
∴最简公分母x﹣2=0,
解得x=2,
当x=2时,m=1
故m的值是1,
故答案为1
【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根,②化分式方程为整式方程,③把增根代入整式方程即可求得相关字母的值.
◆变式训练
(2017年贵州省毕节)的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
(2019年湖南省岳阳市)分式方程的解为x= .
■考点2. 列分式方程解应用题
◇典例
(2019年四川省达州市)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元,节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?
【考点】分式方程的应用
【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,
依题意,得:+=27,
解得:x=8,
经检验,x=8是原方程的解,且符合题意.
答:这种粽子的标价是8元/个.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(2019年山东省菏泽市)列方程(组)解应用题:
德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.
【考点】分式方程的应用
【分析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,根据“行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟”列出方程并解答.
解:设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,
由题意,得+36=.
解得x=1.
经检验,x=1是所列方程的根,且符合题意.
所以1.8x=1.8(千米/分钟).
答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.
【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
◆变式训练
(2019年广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是( )
A. B. C. D.
(2019年四川省绵阳市)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为 km/h.
(2019年山东省淄博市(a卷))解分式方程=﹣2时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)
(2019年湖南省株洲市)关于x的分式方程﹣=0的解为( )
A.﹣3 B.﹣2 C.2 D.3
(2019年江苏省苏州市)小明15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为元,根据题意可列出的方程为( )
A. B. C. D.
(2019年湖北省十堰市)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是( )
A.﹣=15 B.﹣=15
C.﹣=20 D.﹣=20
(2019年湖南省益阳市)解分式方程+=3时,去分母化为一元一次方程,正确的是( )
A.x+2=3 B.x﹣2=3
C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)
(2019年辽宁省辽阳市)某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是( )
A.﹣=60 B.﹣=60
C.﹣=60 D.﹣=60
(2019年广西河池市)分式方程的解为 .
(2019年贵州省铜仁市)分式方程的解为y=________.
(2019年湖北省孝感市)方程=的解为 .
(2019年广西河池市)分式方程的解为 .
(2019年贵州省铜仁市)分式方程的解为y=________.
(2019年湖北省孝感市)方程=的解为 .
(2019年云南省)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.
(2019年吉林省长春市)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.
选择题
(2019年黑龙江省哈尔滨市)方程的解为( ).
A. B. C. D.
(2019年广西百色市)方程=1的解是( )
A.无解 B.x=﹣1 C.x=0 D.x=1
(2019年山东省德州市)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是( )
A.﹣=45 B.﹣=45
C.﹣=45 D.﹣=45
(2019年辽宁省本溪市)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是( )
A.= B.= C.+=140 D.﹣140=
(2019年黑龙江省伊春市)已知关于的分式方程的解是非正数,则的取值范围是( )
A. B. C. D.
(2019年湖北省荆州市)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为( )
A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1
(2019年广东省深圳市)定义一种新运算:,例如:,若,则( )
A.-2 B. C.2 D.
、填空题
(2019年湖北省黄石市)分式方程:﹣=1的解为 .
(2019年江苏省淮安市)方程=1的解是 .
(2019年江苏省宿迁市)关于的分式方程的解为正数,则的取值范围是_____.
(2019年四川省凉山州)方程+=1的解是 .
(2019年山东省滨州市(a卷))方程+1=的解是 .
(2019年黑龙江省齐齐哈尔、黑河市)关于的分式方程的解为非负数,则的取值范围为_______.
(2019年黑龙江省绥化市)甲、乙两辆汽车同时从地出发,开往相距的地,甲、乙两车的速度之比是,结果乙车比甲车早分钟到达地,则甲车的速度为_____.
(2019年湖北省襄阳市)定义:a*b=,则方程2*(x+3)=1*(2x)的解为 .
(2019年山东省烟台市)若关于x的分式方程﹣1=有增根,则m的值为 .
解答题
(2019年广西玉林市)解方程:﹣=1.
(2019年广西梧州市)解方程:+1=.
(2019年湖北省随州市)解关于x的分式方程:=.
(2019年湖北省黄冈市)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.
(2019年江苏省常州市)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?
(2019年江苏省扬州)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。甲工程队每天整治河道多少米?
(2019年山东省威海市)列方程解应用题:
小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.
(2019年湖南省湘西州)列方程解应用题:
某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.
(2019年四川省宜宾市)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.
第二章方程与不等式第11节 分式方程及应用
■知识点一:分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有__未知数__的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为__零__.21*cnjy*com
3. 增根:使分式方程分母为零的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:【来源:21cnj*y.co*m】
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__整式__方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__增根__,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.
5 用换元法解分式方程的一般步骤:
① 设辅助未知数 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把辅助未知数代入原设中,求出原未知数的值;④ 检验作答.
■知识点二:列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、__检验__、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是所列分式方程的解;二是检验所求的解是否__符合实际意义__.
■考点1.分式方程的概念、解法
◇典例:
(2019年四川省成都市)分式方程+=1的解为( )
A.x=﹣1 B.x=1 C.x=2 D.x=﹣2
【考点】解分式方程
【分析】先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.
解:方程两边同时乘以x(x﹣1)得,x(x﹣5)+2(x﹣1)=x(x﹣1),
解得x=﹣1,
把x=﹣1代入原方程的分母均不为0,
故x=﹣1是原方程的解.
故选:A.
【点评】此题主要考查了解分式方程,注意,解分式方程时需要验根.
(2019年四川省巴中市)若关于x的分式方程+=2m有增根,则m的值为 .
【考点】分式方程的增根
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)
∵原方程有增根,
∴最简公分母x﹣2=0,
解得x=2,
当x=2时,m=1
故m的值是1,
故答案为1
【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根,②化分式方程为整式方程,③把增根代入整式方程即可求得相关字母的值.
◆变式训练
(2017年贵州省毕节)的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
【考点】分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘(x﹣1),
得7x+5(x﹣1)=2m﹣1,
∵原方程有增根,
∴最简公分母(x﹣1)=0,
解得x=1,
当x=1时,7=2m﹣1,
解得m=4,
所以m的值为4.
故选C.
【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为,②确定增根,化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值。
(2019年湖南省岳阳市)分式方程的解为x= .
【考点】解分式方程
【分析】观察可得最简公分母为x(x+1).去分母,转化为整式方程求解.结果要检验.
解:方程两边同乘x(x+1),
得x+1=2x,
解得x=1.
将x=1代入x(x+1)=2≠0.
所以x=1是原方程的解.
【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
■考点2. 列分式方程解应用题
◇典例
(2019年四川省达州市)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元,节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?
【考点】分式方程的应用
【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,
依题意,得:+=27,
解得:x=8,
经检验,x=8是原方程的解,且符合题意.
答:这种粽子的标价是8元/个.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(2019年山东省菏泽市)列方程(组)解应用题:
德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.
【考点】分式方程的应用
【分析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,根据“行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟”列出方程并解答.
解:设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,
由题意,得+36=.
解得x=1.
经检验,x=1是所列方程的根,且符合题意.
所以1.8x=1.8(千米/分钟).
答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.
【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
◆变式训练
(2019年广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是( )
A. B. C. D.
【考点】分式方程的应用
【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.
解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,
∵甲做120个所用的时间与乙做150个所用的时间相等,
∴,
故选D.
【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.
(2019年四川省绵阳市)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为 km/h.
【考点】分式方程的应用
【分析】直接利用顺水速=静水速+水速,逆水速=静水速﹣水速,进而得出等式求出答案.
解:设江水的流速为xkm/h,根据题意可得:
=,
解得:x=10,
经检验得:x=10是原方程的根,
答:江水的流速为10km/h.
故答案为:10.
【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.
(2019年山东省淄博市(a卷))解分式方程=﹣2时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,即可得到结果.
解:去分母得:1﹣x=﹣1﹣2(x﹣2),
故选:D.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
(2019年湖南省株洲市)关于x的分式方程﹣=0的解为( )
A.﹣3 B.﹣2 C.2 D.3
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2x﹣6﹣5x=0,
解得:x=﹣2,
经检验x=﹣2是分式方程的解,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
(2019年江苏省苏州市)小明15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为元,根据题意可列出的方程为( )
A. B. C. D.
【考点】分式方程的应用
【分析】先找出本题等量关系为两人买的笔记本数量,再根据等量关系列出方程
解:找到等量关系为两人买的笔记本数量
故选A
【点睛】本题考查分式方程的简单应用,本题关键在于找出等量关系
(2019年湖北省十堰市)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是( )
A.﹣=15 B.﹣=15
C.﹣=20 D.﹣=20
【考点】由实际问题抽象出分式方程
【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.
解:设原计划每天铺设钢轨x米,可得:,
故选:A.
【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.
(2019年湖南省益阳市)解分式方程+=3时,去分母化为一元一次方程,正确的是( )
A.x+2=3 B.x﹣2=3
C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)
【考点】一元一次方程的定义,解分式方程
【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),把分式方程便可转化成一元一次方程.
解:方程两边都乘以(2x﹣1),得
x﹣2=3(2x﹣1),
故选:C.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
(2019年辽宁省辽阳市)某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是( )
A.﹣=60 B.﹣=60
C.﹣=60 D.﹣=60
【考点】由实际问题抽象出分式方程
【分析】设原计划每天修路x公里,根据工作时间=工作总量÷工作效率结合提前60天完成任务,即可得出关于x的分式方程.
解:设原计划每天修路x公里,则实际每天的工作效率为(1+25%)x公里,
依题意得:﹣=60.
故选:D.
【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
(2019年广西河池市)分式方程的解为 .
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x﹣2=1,
解得:x=3,
经检验x=3是分式方程的解.
故答案为:x=3.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
(2019年贵州省铜仁市)分式方程的解为y=________.
【考点】分式方程的解,解分式方程
【分析】先去分母得出方程的解,再检验即可
解:去分母得:5y=3y﹣6,
解得:y=﹣3,
经检验y=﹣3是分式方程的解,
则分式方程的解为y=﹣3.
故答案为:﹣3.
【点睛】此题考查分式方程的解,掌握运算法则是解题关键
(2019年湖北省孝感市)方程=的解为 .
【考点】解分式方程
【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.
解:两边同时乘2x(x+3),得
x+3=4x,
解得x=1.
经检验x=1是原分式方程的根.
【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.
(2019年广西河池市)分式方程的解为 .
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x﹣2=1,
解得:x=3,
经检验x=3是分式方程的解.
故答案为:x=3.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
(2019年贵州省铜仁市)分式方程的解为y=________.
【考点】分式方程的解,解分式方程
【分析】先去分母得出方程的解,再检验即可
解:去分母得:5y=3y﹣6,
解得:y=﹣3,
经检验y=﹣3是分式方程的解,
则分式方程的解为y=﹣3.
故答案为:﹣3.
【点睛】此题考查分式方程的解,掌握运算法则是解题关键
(2019年湖北省孝感市)方程=的解为 .
【考点】解分式方程
【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.
解:两边同时乘2x(x+3),得
x+3=4x,
解得x=1.
经检验x=1是原分式方程的根.
【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.
(2019年云南省)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.
【考点】分式方程的应用
【分析】设甲校师生所乘大巴车的平均速度为xkm/h,则乙校师生所乘大巴车的平均速度为1.5xkm/h,根据甲校师生比乙校师生晚1小时到达目的地列出方程进行求解即可.
解:设甲校师生所乘大巴车的平均速度为xkm/h,则乙校师生所乘大巴车的平均速度为1.5xkm/h.根据题意得
,
解得x=60,
经检验,x=60是原分式方程的解且符合实际意义,
1.5x=90,
答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h和90km/h.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
(2019年吉林省长春市)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.
【考点】分式方程的应用
【分析】该灯具厂原计划每天加工这种彩灯的数量为x套,由题意列出方程:﹣=5,解方程即可.
解:该灯具厂原计划每天加工这种彩灯的数量为x套,则实际每天加工彩灯的数量为1.2x套,
由题意得:﹣=5,
解得:x=300,
经检验,x=300是原方程的解,且符合题意,
答:该灯具厂原计划每天加工这种彩灯的数量为300套.
【点评】本题考查了分式方程的应用以及分式方程的解法,熟练掌握分式方程的解法,根据题意列出方程是解题的关键.
选择题
(2019年黑龙江省哈尔滨市)方程的解为( ).
A. B. C. D..
【考点】解分式方程
解:
,
∴,
∴;
将检验是方程的根,
∴方程的解为;
故选:C.
【点睛】本题主要考查了分式方程及其解法,解分式方程的步骤为:去分母,化为整式方程;移项、合并同类项;系数化为1;检验;结论,熟练掌握分式方程的解法是解题的关键.
(2019年广西百色市)方程=1的解是( )
A.无解 B.x=﹣1 C.x=0 D.x=1
【考点】分式方程的解,解分式方程
【分析】移项可得﹣1==0,可得x=0,
解:=1,
∴移项可得﹣1==0,
∴x=0,
经检验x=0是方程的根,
∴方程的根是x=0,
故选:C.
【点评】本题考查分式方程的解法,掌握分式方程的求解方法,验根是关键.
(2019年山东省德州市)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是( )
A.﹣=45 B.﹣=45
C.﹣=45 D.﹣=45
【考点】由实际问题抽象出分式方程
【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案.
解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:
﹣=45.
故选:A.
【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键.
(2019年辽宁省本溪市)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是( )
A.= B.= C.+=140 D.﹣140=
【考点】由实际问题抽象出分式方程
【分析】设甲种型号机器人每台的价格是x万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”,列出关于x的分式方程.
解:设甲型机器人每台x万元,根据题意,可得:,
故选:A.
【点评】本题考查了分式方程的应用,解题的关键正确找出等量关系,列出分式方程.
(2019年黑龙江省伊春市)已知关于的分式方程的解是非正数,则的取值范围是( )
A. B. C. D.
【考点】分式方程的解
【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可
解:,
方程两边同乘以,得
,
移项及合并同类项,得
,
分式方程的解是非正数,,
,
解得,,
故选:A.
【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m的值
(2019年湖北省荆州市)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为( )
A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1
【考点】分式方程的解,解一元一次不等式
【分析】根据分式方程的解法即可求出答案.
解:∵=2,
∴=2,
∴x=2+k,
∵该分式方程有解,
∴2+k≠1,
∴k≠﹣1,
∵x>0,
∴2+k>0,
∴k>﹣2,
∴k>﹣2且k≠﹣1,
故选:B.
【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.
(2019年广东省深圳市)定义一种新运算:,例如:,若,则( )
A.-2 B. C.2 D.
【考点】解分式方程
【分析】根据新定义运算得到一个分式方程,求解即可.
解:根据题意得,
,
则,
经检验,是方程的解,
故选B.
【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.
填空题
(2019年湖北省黄石市)分式方程:﹣=1的解为 .
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,
解得:x=4或x=﹣1,
经检验x=4是增根,分式方程的解为x=﹣1,
故答案为:x=﹣1
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
(2019年江苏省淮安市)方程=1的解是 .
【考点】解分式方程
【分析】方程两边都乘以最简公分母,转化成一元一次方程进行解答便可.
解:方程两边都乘以(x+2),得1=x+2,
解得,x=﹣1,
经检验,x=﹣1是原方程的解,
故答案为:x=﹣1.
【点评】本题主要考查了解分式方程,是基础题,关键是熟记分式方程的解法和一般步骤.
(2019年江苏省宿迁市)关于的分式方程的解为正数,则的取值范围是_____.
【考点】解分式方程,分式方程的解
【分析】直接解分式方程,进而利用分式方程的解是正数得出的取值范围,进而结合分式方程有意义的条件分析得出答案.
去分母得:,
解得:,
,
解得:,
当时,不合题意,
故且.
故答案为:且.
【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.
(2019年四川省凉山州)方程+=1的解是 .
【考点】解分式方程,解一元二次方程
【分析】去分母,把分式方程化为整式方程,求解并验根即可.
解:
去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)
去括号,得2x2+x﹣3=x2﹣1
移项并整理,得x2+x﹣2=0
所以(x+2)(x﹣1)=0
解得x=﹣2或x=1
经检验,x=﹣2是原方程的解.
故答案为:x=﹣2.
【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.
(2019年山东省滨州市(a卷))方程+1=的解是 .
【考点】解分式方程
【分析】公分母为(x﹣2),去分母转化为整式方程求解,结果要检验.
解:去分母,得x﹣3+x﹣2=﹣3,
移项、合并,得2x=2,
解得x=1,
检验:当x=1时,x﹣2≠0,
所以,原方程的解为x=1,
故答案为:x=1.
【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.
(2019年黑龙江省齐齐哈尔、黑河市)关于的分式方程的解为非负数,则的取值范围为_______.
【考点】解分式方程
【分析】根据解分式方程的方法和方程的解为非负数,可以求得的取值范围.
解:,
方程两边同乘以,得
,
去括号,得
,
移项及合并同类项,得
,
关于的分式方程的解为非负数,,
,
解得,且,
故答案为:且.
【点睛】本题主要考查根据分式方程的根求解参数,难度系数稍微有点大,但是是必考点.
(2019年黑龙江省绥化市)甲、乙两辆汽车同时从地出发,开往相距的地,甲、乙两车的速度之比是,结果乙车比甲车早分钟到达地,则甲车的速度为_____.
【考点】分式方程的应用
【分析】设甲车的速度为,则乙车的速度为,根据乙车比甲车早30分钟到达B地列方程求解即可.
解:设甲车的速度为,则乙车的速度为,
依题意,得,
解得:,
经检验,是原方程的解,且符合题意,
故答案为:80.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.注意分式方程要验根.
(2019年湖北省襄阳市)定义:a*b=,则方程2*(x+3)=1*(2x)的解为 .
【考点】有理数的混合运算,解分式方程
【分析】根据新定义列分式方程可得结论.
解:2*(x+3)=1*(2x),
=,
4x=x+3,
x=1,
经检验:x=1是原方程的解,
故答案为:x=1.
【点评】本题考查了解分式方程和新定义的理解,熟练掌握解分式方程的步骤是关键.
(2019年山东省烟台市)若关于x的分式方程﹣1=有增根,则m的值为 .
【考点】分式方程的增根
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.
.解:方程两边都乘(x﹣2),
得3x﹣x+2=m+3
∵原方程有增根,
∴最简公分母(x﹣2)=0,
解得x=2,
当x=2时,m=3.
故答案为3.
【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根,②化分式方程为整式方程,③把增根代入整式方程即可求得相关字母的值.
解答题
(2019年广西玉林市)解方程:﹣=1.
【考点】解分式方程
【分析】化简所求方程为=1,将分式方程转化为整式方程x2+2x﹣3=(x﹣1)(x+2),解得x=1,检验方程的根即可求解,
解:﹣===1,
∴x2+2x﹣3=(x﹣1)(x+2),
∴x=1,
经检验x=1是方程的增根,
∴原方程无解,
【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,验根是关键.
(2019年广西梧州市)解方程:+1=.
【考点】解分式方程
【分析】直接利用分式方程的解法解方程得出答案.
解:方程两边同乘以(x﹣2)得:x2+2+x﹣2=6,
则x2+x﹣6=0,
(x﹣2)(x+3)=0,
解得:x1=2,x2=﹣3,
检验:当x=2时,x﹣2=0,故x=2不是方程的根,
x=﹣3是分式方程的解.
【点评】此题主要考查了分式方程的解法,正确去分母、检验是解题关键.
(2019年湖北省随州市)解关于x的分式方程:=.
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:27﹣9x=18+6x,
移项合并得:15x=9,
解得:x=,
经检验x=是分式方程的解.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
(2019年湖北省黄冈市)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.
【考点】分式方程的应用
【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,
依题意,得:﹣=10,
解得:x=80,
经检验,x=80是原方程的解,且符合题意,
∴1.25x=100.
答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(2019年江苏省常州市)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?
【考点】分式方程的应用
【分析】设甲每小时做x个零件,则乙每小时做(30﹣x)个零件,根据关键语句“甲做180个零件所用的时间与乙做120个零件所用的时间相等”列出方程,再求解即可.
解:设甲每小时做x个零件,则乙每小时做(30﹣x)个零件,
由题意得:=,
解得:x=18,
经检验:x=18是原分式方程的解,
则30﹣18=12(个).
答:甲每小时做18个零件,则乙每小时做12个零件.
【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意检验.
(2019年江苏省扬州)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。甲工程队每天整治河道多少米?
【考点】分式方程的应用
【分析】设甲工程队每天整治河道xm,则乙工程队每天整治(1500-x)m,根据“甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等”列方程进行求解即可.
解:设甲工程队每天整治河道xm,则乙工程队每天整治(1500-x)m,
由题意得:,
解得:x=900,
经检验的x=900是原方程的根且符合实际意义,
答:甲工程队每天整治河道900米.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.注意分式方程要进行检验.
(2019年山东省威海市)列方程解应用题:
小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.
【考点】分式方程的应用
【分析】直接利用小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,进而得出等式求出答案.
解:设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:
﹣4=,
解得:x=50,
经检验得:x=50是原方程的根,故3x=150,
答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.
【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.
(2019年湖南省湘西州)列方程解应用题:
某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.
【考点】分式方程的应用
【分析】设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,根据时间=路程÷速度结合提速前行驶300km和提速后行驶500km(300+200)所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,
依题意,得:=,
解得:x=120,
经检验,x=120是原方程的解,且符合题意.
答:该列车提速前的平均速度为120km/h.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(2019年四川省宜宾市)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.
【考点】分式方程的应用
【分析】设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C城,以时间做为等量关系列方程求解.
解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时.
根据题意,得:+=,
解得:x=80,或x=﹣110(舍去),
∴x=80,
经检验,x=,80是原方程的解,且符合题意.
当x=80时,x+10=90.
答:甲车的速度为90千米/时,乙车的速度为80千米/时.
【点评】本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解.