1.1.5 全称量词与存在量词
一、教学目标:
1.知识与技能目标
(1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.
(2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及
判断其命题的真假性.
过程与方法目标
使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.
3.情感态度价值观
通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
二、教学重点、难点
重点:理解全称量词、存在量词的概念区别;
难点:全称命题和特称命题真假的判定.
三、学情分析
在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个┅┅”等量词的命题进行否定,确定它们的非命题。大家都曾感到困惑和无助,今天我们将专门学习和讨论这类问题,以解心中的郁结。
四、教学过程
1.思考、分析
下列语句是命题吗?假如是命题你能判断它的真假吗?
(1)2x+1是整数;
(2) x>3;
(3) 如果两个三角形全等,那么它们的对应边相等;
(4)平行于同一条直线的两条直线互相平行;
(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;
(6)所有有中国国籍的人都是黄种人;
(7)对所有的x∈R, x>3;
(8)对任意一个x∈Z,2x+1是整数。
推理、判断
(让学生自己表述)
(1)、(2)不能判断真假,不是命题。
(3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;
命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.
命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3.
(至少有一个x∈R, x≤3)
命题(8)是真命题。事实上不存在某个x∈Z,使2x+1不是整数。也可以说命题:存在某个x∈Z使2x+1不是整数,是假命题.
3.发现、归纳
命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“(”表示,含有全称量词的命题,叫做全称命题。命题(5)-(8)都是全称命题。
通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示。那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:(x(M, p(x),读做“对任意x属于M,有
p(x)成立”。
刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:
(5),存在个别高一学生数学课本不是采用人民教育出版社A版的教科书;
(6),存在一个(个别、部分)有中国国籍的人不是黄种人.
(7), 存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3)
(8),不存在某个x∈Z使2x+1不是整数.
这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“”表示。含有存在量词的命题叫做特称命题(或存在命题)命题(5),-(8),都是特称命题(存在命题).
特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:。读做“存在一个x属于M,使p(x)成立”.
全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等.
例1、判断下列全称命题的真假:
(1)所有的素数都是奇数;
(2);
(3)对每一个无理数,也是无理数.
变式:判断下列命题的真假:
(1);(2).
小结:要判定一个全称命题是真命题,必须对限定集合中每一个元素验证成立;但要判定全称命题是假命题,却只要能举出集合中的一个,使得不成立即可.
例2、判断下列特称命题的真假:
(1)有一个实数,使;
(2)存在两个相交平面垂直于同一条直线;
(3)有些整数只有两个正因数.
变式:判断下列命题的真假:(1);(2).
例3、对方程有解,求a的取值范围.
变式:对于函数,若,使得成立,则称为的不动点.已知函数.(1)当时,求函数的不动点;(2)若对,函数恒有两个相异的不动点,求实数的取值范围.
小结:要判定特称命题“” 是真命题只要在集合中找一个元素,使成立即可;如果集合中,使成立的元素不存在,那么这个特称命题是假命题.
五、当堂检测
1、判断下列全称命题的真假:
(1)每个指数函数都是单调函数;
(2)任何实数都有算术平方根;
(3),是无理数.
(4);
(5)至少有一个整数,它既不是合数,也不是素数;
(6),是无理数.
2、用符号“”和“”表示下列含有量词的命题:
(1)自然数的平方大于0;
(2)圆上任一点到圆心的距离是;
(3)存在一对整数,使得;
(4)存在一个无理数,它的立方是有理数.
3、已知:对恒成立,则a的取值范围是;
4、已知函数.
(1)是否存在实数,使得对任意实数恒成立,并说明理由.
(2)若存在一个实数,使得成立,求实数的取值范围.
【设计意图:通过三种层次的反馈例练,由浅入深,逐渐达到运用新知的目的,同时反馈学生学习理解的
程度,进行学习监控和补救.】
六、课堂小结
1.知识建构
2.能力提高
3.课堂体验
七、课时练与测
八、教学反思