课堂检测·素养达标
1.某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是
( )
A.明天本地有80%的区域降雨,20%的区域不降雨
B.明天本地有80%的时间降雨,20%的时间不降雨
C.明天本地降雨的机会是80%
D.以上说法均不正确
【解析】选C.选项A,B显然不正确,因为80%是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的机会是80%.
2.根据医疗所的调查,某地区居民血型分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选1人,那么能为病人输血的概率为 ( )
A.50% B.15% C.45% D.65%
【解析】选A.仅有O型血的人能为O型血的人输血.故选A.
3.同时掷两颗骰子,得到点数和为6的概率是 ( )
A. B. C. D.
【解析】选B.列表可得所有可能情况是36种,而“点数和为6”即(1,5),(5,1),(2,4),(4,2),(3,3),所以“点数和为6”的概率为.
4.某比赛为两运动员制定下列发球规则:
规则一:投掷一枚硬币,出现正面向上,甲发球,反面向上,乙发球;
规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;
规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球.
则对甲、乙公平的规则是 ( )
A.规则一和规则二 B.规则一和规则三
C.规则二和规则三 D.规则二
【解析】选B.规则一:每人发球的机率都是,是公平的.规则二:所有情况有(红1,红2),(红1,黑1),(红1,黑2),(红2,黑1),(红2,黑2),(黑1,黑2)6种,同色的有2种,所以甲发球的可能性为,是不公平的.规则三:所有情况有(红1,红2),(红1,红3),(红2,红3),(红1,黑),(红2,黑),(红3,黑),同色球有3种,所以两人发球的可能性都是,是公平的.
课时素养评价 二十二
统计与概率的应用
(25分钟·50分)
一、选择题(每小题4分,共16分)
1.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C表示抽到次品这一事件,则对C的说法正确的是 ( )
A.概率为
B.频率为
C.概率接近
D.每抽10台电视机必有1台次品
【解析】选B.事件C发生的频率为,由于只做了一次试验,故不能得出概率接近的结论.
2.某中学要在高一年级的二、三、四班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面向上记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班.按照这个规则,当选概率最大的是 ( )
A.二班 B.三班
C.四班 D.三个班机会均等
【解析】选B.掷两枚硬币,共有4种结果:(2,2),(2,1),(1,2),(1,1),故选四班的概率是,选三班的概率为=,选二班的概率为,故选B.
3.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理 ( )
A.甲 B.乙
C.甲和乙 D.以上都对
【解析】选B.从养蜂人甲放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,而从养蜂人乙放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,所以,现在捕获的这只黑小蜜蜂是养蜂人乙放养的可能性较大.
4.在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率为
( )
A. B. C. D.
【解析】选C.10~99中有90个两位数,这些两位数中,偶数有45个,10~99中有30个能被3整除的数,其中奇数有30÷2=15(个),所以所求的概率为=.
二、填空题(每小题4分,共8分)
5.某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2 500套座椅进行抽检,共抽检了100套,发现有2套次品,试问该厂所生产的2 500套座椅中大约有________套次品.?
【解析】设有n套次品,由概率的统计定义,知=,解得n=50,所以该厂所生产的2 500套座椅中大约有50套次品.
答案:50
6.小明和小展按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则________(填“公平”或“不公平”).?
【解析】当第一个人第一次取2支时,还剩余3支,无论是第二个人取1支还是取2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜,所以不公平.
答案:不公平
三、解答题(共26分)
7.(12分)现共有两个相同的卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的办法分配玩具,拿一个飞镖射向如图所示的圆盘,若射中区域的数字为1,2,3,则玩具给展展和宁宁,若射中区域的数字为4,5,6,则玩具给宁宁和凯凯,若射中区域的数字为7,8,则玩具给展展和凯凯.试问这个游戏规则公平吗?
【解析】由题知,若射中1,2,3,7,8这5个数字,展展可得到玩具,所以展展得到玩具的概率是.同理宁宁得到玩具的概率是=;凯凯得到玩具的概率是,三个小朋友得到玩具的概率不同,所以这个游戏规则不公平.
8.(14分)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数
甲
乙
丙
丁
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
(1)估计顾客同时购买乙和丙的概率.
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率.
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
【解析】(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为=0.2,顾客同时购买甲和丙的概率可以估计为=0.6,
顾客同时购买甲和丁的概率可以估计为=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
(15分钟·30分)
1.(4分)有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为 ( )
A. B. C. D.
【解析】选C.从长度分别为2,3,5,7,9的五条线段中任取三条,基本事件总数为10,能够构成三角形的取法有(3,5,7),(3,7,9),(5,7,9)三种,由古典概型概率计算公式可得:所取三条线段能构成一个三角形的概率为.
2.(4分)甲、乙、丙、丁四人做相互传递球练习,第一次甲传给其他三人中的一人(假设每个人得到球的概率相同),第二次由拿球者再传给其他三人中的一人,这样共传了三次,则第三次球仍传回到甲手中的概率为 ( )
A. B. C. D.
【解析】选B.本题可用树形图进行解决,如图所示,共有27种结果,第三次球传回到甲手中的结果有6种.故所求概率为P==.
3.(4分)在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.?
【解析】如图,在正六边形ABCDEF的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种情况,故构成的四边形是梯形的概率P==.
答案:
4.(4分)某汽车站,每天均有3辆开往南京的分为上、中、下等级的客车.某天袁先生准备在该汽车站乘车前往南京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为________. ?
【解析】上、中、下三辆车的出发顺序是任意的,有上、中、下;上、下、中;中、上、下;中、下、上;下、上、中;下、中、上,6种情况,若第二辆车比第一辆车好,有3种情况:下、中、上;下、上、中;中、上、下,符合条件的仅有2种情况;若第二辆不比第一辆好,有3种情况:中、下、上;上、中、下;上、下、中,其中仅有1种情况符合条件.所以袁先生乘上上等车的概率P==.
答案:
【加练·固】
据人口普查统计,育龄妇女生男生女是等可能的,随着国家放开二孩政策,人们生育二孩的积极性普遍提高,问一个二孩家庭两孩均是女孩的概率是 ( )
A. B. C. D.
【解析】选C.所含的基本事件总数为4,分别为(男,男),(男,女),(女,男),(女,女),所以两孩均是女孩的概率为.
5.(14分)在孟德尔豌豆杂交试验中,若用纯黄色圆粒和纯绿色皱粒作为父本进行杂交,试求子二代结果中性状分别为黄色圆粒、黄色皱粒、绿色圆粒和绿色皱粒的比例约为多少?
【解析】记纯黄色圆粒为XXYY,纯绿色皱粒为xxyy,其中X,Y为显性,x,y为隐性,则杂交试验的子二代结果为:
XY
Xy
xY
xy
XY
XXYY
XXYy
XxYY
XxYy
Xy
XXYy
XXyy
XxYy
Xxyy
xY
XxYY
XxYy
xxYY
xxYy
xy
XxYy
Xxyy
xxYy
xxyy
则黄色圆粒:XXYY个数为1,XxYY个数为2,XXYy个数为2,XxYy个数为4,即黄色圆粒个数为9.
黄色皱粒:XXyy个数为1,Xxyy个数为2,即黄色皱粒个数为3.
绿色圆粒:xxYY个数为1,xxYy个数为2,即绿色圆粒个数为3,
绿色皱粒:xxyy个数为1.
所以黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒的比例为9∶3∶3∶1.
1.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.
由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.
如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为________. ?
【解析】因为掷硬币出现正面向上的概率为,我们期望大约有150人回答第一个问题.又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,另外5个回答“是”的人服用过兴奋剂.因此我们估计这群人中大约有3.33%的人服用过兴奋剂.
答案:3.33%
2.某重点高中拟把学校打造成新型示范高中,为此制定了很多新的规章制度,新规章制度实施一段时间后,学校就新规章制度的认知程度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问题5分,调查结束后,发现这100名学生的成绩都在[75,100]内,按成绩分成5组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],绘制成如图所示的频率分布直方图,已知甲、乙、丙3人分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对新规章制度作深入学习.
(1)求这100人的平均得分(同一组数据用该区间的中点值作代表).
(2)求第3,4,5组分别选取的人数.
(3)若甲、乙、丙都被选取对新规章制度作深入学习,之后要再从这6人中随机选取2人全面考查他们对新规章制度的认知程度,求甲、乙、丙这3人至多有一人被选取的概率.
【解析】(1)这100人的平均得分为=5××0.01+×0.07+×0.06+×0.04+×0.02=87.25.
(2)第3组的人数为0.06×5×100=30(人);第4组的人数为0.04×5×100=20(人);第5组的人数为0.02×5×100=10(人),所以共有60人,用分层抽样在这三组中选取的人数分别为3,2,1.
(3)记其他3人为丁、戊、己,则所有选取的结果为(甲、乙)、(甲、丙)、(甲、丁)、(甲、戊)、(甲、己)、(乙、丙)、(乙、丁)、(乙、戊)、(乙、己)、(丙、丁)、(丙、戊)、(丙、己)、(丁、戊)、(丁、己)、(戊、己),共15种情况,其中甲、乙、丙这3人至多有一人被选取有12种情况,所以所求概率为P==.