课时8、按比例分配的实际问题
教学目标:1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
3、培养学生热爱生活,热爱数学的兴趣。
教学重点和难点:理解按比例分配实际问题的意义,掌握解题的方法。
教学过程:
一、导入
复习:1、甲一堆煤炭,运走的吨数与剩下吨数的比是2:3,把运走的吨数看作( )份,剩下的就有这样的( )份,总吨数就有这样的( )份。运走的吨数占这堆煤炭的(—),剩下的吨数占这堆煤炭的(—)。
2、男、女职工人数的比是9:7,男职工人数是职工总人数的( )分之( ),女职工人数是职工总人数的( )分之( )。
3、去年,王大伯出资5万元,李叔叔出资3万元继续合资办厂,由于他们齐心合力,经营有道,一年下来,除去缴纳税款、发工资和其他费用,又获得利润8万元。该怎么分配这些利润?
指出:在实际生活中,有时并不是把一个数量平均分,而是按一定的比来分配。这就是我们今天要学习的新知识——按比例分配的实际问题。(板书课题)
二、新授
1、例11:把30个方格涂上红色和黄色,使红色与黄色方格数的比是3∶2。两种颜色各应涂多少格?先算一算,再涂一涂。
⑴提问:怎样理解“红色与黄色方格数的比是3∶2”?
理解:①把方格总数平均分成5份,其中红色方格占3份,黄色方格占2份。②红色方格占总数方格数的(—),黄色方格占总方格数的(—)。
2、提问:你准备怎样解决这个问题?(同桌互相说一说。)
方法一:3+2=5 30÷5×3=18(格) 30÷5×2=12(格) 方法二:30×=30×=18(格) 30×=30×=12(格)
答:红色应涂18格,黄色应涂12格。
3、选择一种你喜欢的方法解答,并进行检验,再与同学交流。学生自主解决问题。
检验的方法:①红色方+黄色方格=30格;②红色方格与黄色方格数的比是18∶12,化简之后得3∶2;③通过涂一涂也可以检验答案是否正确。
例11的拓展:给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是1:1。两种颜色各应涂多少格?(学生口答)
小结:平均分是一种特殊的按比例分配。
5、出示想一想题目的内容:把30个方格按1:2:3涂成红、黄、绿三种颜色,你能算出三种颜色各应涂多少格吗?
理解:①按1:2:3涂成红、黄、绿三种颜色表示的意义。②1:2:3不是1÷2÷3,而是一个连比,1:2:3表示哪几个数量之间的比?③一共有6份,三种颜色的方格数各占方格总数的几分之几?涂一涂,再列式解答。学生独立完成,指名板演。
方法一:1+2+3=6 30÷6=5(格)
5×1=5(格) 5×2=10(格) 5×3=15(格)
答:红色应涂5格,黄色应涂10格,绿色应涂15格。
方法二:30×=30×=5(格)
30×=30×=10(格)
30×=30×=15(格)
答:红色应涂5格,黄色应涂10格,绿色应涂15格。
说一说自己的解答方法,并进行检验。
6、总结:什么是按比例分配?按比例分配的实际问题的基本特征是什么?解答的方法是什么?
①在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
②按比例分配应用题基本特征:已知:1、总量 2、各部分量的比,求:各部分的量。
③解决的方法:方法一第一步求总份数;第二步求各部分量
方法二把比转化成每一个数量占总数量的几分之几,根据求一个数的几分之几是多少,用乘法来解答。
三、巩固练习
1、?试一试。三个小组去植树,植树棵数按各小组人数的比分配。每个小组各应植树多少棵?(训练学生写出各小组人数的比。)
2、?练一练(作业)
⑴学校合唱队有48人,其中男生和女生人数的比是1:3。男、女生各有多少人?
⑵蓓蕾幼儿园大班有35人,中班有31人,小班有24人。张阿姨准备把180块巧克力按班级人数的比分给三个班。每班各应分得多少块?
四、生活中的按比例分配问题(引导学生读一读,说一说)
1、?火药是我国的四大发明之一,它的主要成份是一硝二磺三木炭。
2、左边的圆表示一场足球比赛的时间90分。红色的扇形表示足球比赛已经进行的时间。先估计已经比赛的时间与剩余时间的比,再算出这场比赛大约还剩多少分钟。
3、大象最近开办了一家公司,小猪、小狗、狐狸因工作努力,大象决定拿出一点钱按4:5:6奖赏给小猪、小狗、狐狸。正当小猪、小狗想着自己拿钱的份数时,狐狸眼珠一转,说:“各位,为计算简单一点,我们每人去掉自己的三份的钱,按1:2:3来分这些钱,怎么样?反正大家也没有任何损失。”同学们,你们觉得狐狸说得有道理吗?
五、畅所欲言,总结下课
1、说一说自己的收获、疑惑、发现、建议……
2、这节课你的表现如何?谁最值得你学习?
板书设计:按比例分配的实际问题
已知:总量、各部分量的比,求:各部分的量
方法一 方法二