(新课标)人教版物理选修3-1 第3章 6 带电粒子在匀强磁场中的运动50张PPT

文档属性

名称 (新课标)人教版物理选修3-1 第3章 6 带电粒子在匀强磁场中的运动50张PPT
格式 zip
文件大小 3.4MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2019-10-13 09:09:35

文档简介

6 带电粒子在匀强磁场中的运动
[学习目标] 1.了解带电粒子在匀强磁场中的运动规律。(重点)2.掌握带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式及应用。(重点、难点)3.了解质谱仪和回旋加速器的工作原理。(难点)
一、带电粒子在匀强磁场中的运动
1.洛伦兹力的特点
(1)洛伦兹力不改变带电粒子速度的大小,或者说,洛伦兹力对带电粒子不做功。
(2)洛伦兹力方向总与速度方向垂直,正好起到了向心力的作用。
2.带电粒子在匀强磁场中的运动
(1)运动特点:沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
(2)半径和周期公式
质量为m、带电荷量为q、速率为v的带电粒子,在磁感应强度为B的匀强磁场中做匀速圆周运动,洛伦兹力提供向心力。
①半径:由qvB=m得r=。
②周期:由T=得T=。
由此可知带电粒子在磁场中做匀速圆周运动的周期跟速率v和半径r无关。
二、质谱仪
1.原理:如图所示。
2.加速
带电粒子进入质谱仪的加速电场,由动能定理得:
Uq=mv2。 ①
3.偏转
带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:qvB=。 ②
4.由①②两式可以求出粒子的半径r、质量m、比荷等。其中由r=可知电荷量相同时,半径将随质量变化。
5.质谱仪的应用
可以测定带电粒子的质量和分析同位素。
三、回旋加速器
1.工作原理
如图所示,D1和D2是两个中空的半圆金属盒,它们之间有一定的电势差U,A处的粒子源产生的带电粒子在两盒之间被电场加速。D1、D2处于与盒面垂直的匀强磁场B中,粒子将在磁场中做匀速圆周运动,经半个圆周(半个周期)后,再次到达两盒间的缝隙,控制两盒间电势差,使其恰好改变正负,于是粒子在盒缝间再次被加速,如果粒子每次通过盒间缝隙均能被加速,粒子速度就能够增加到很大。
2.周期
粒子每经过一次加速,其轨道半径就大一些,但粒子绕圆周运动的周期不变。
3.最大动能
由qvB=和Ek=mv2得Ek=。
1.思考判断(正确的打“√”,错误的打“×”)
(1)利用回旋加速器加速带电粒子,要提高加速粒子的最终能量,应尽可能增大磁感应强度B和D形盒的半径R。 (√)
(2)带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速度的大小有关,而周期与速度、半径都无关。 (√)
(3)回旋加速器工作时,电场必须是周期性变化的。 (√)
(4)回旋加速器中,磁场的作用是改变粒子速度的方向,便于多次加速。
(√)
2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度2倍的匀强磁场,则(  )
A.粒子的速率加倍,周期减半
B.粒子的速率不变,轨道半径加倍
C.粒子的速率减半,轨道半径变为原来的
D.粒子的速率不变,周期减半
D [因为洛伦兹力对运动电荷不做功,所以速率不变,由轨道半径公式r=和周期公式T=可判断,选项D正确。]
3.有三束粒子,分别是质子(H)、氚核(H)和α(He)粒子束,如果它们均以相同的速度垂直射入匀强磁场(磁场方向垂直于纸面向里),图中能正确表示这三束粒子的运动轨迹的是(  )
A    B     C    D
C [由粒子在磁场中运动的半径r=可知,质子、氚核、α粒子轨迹半径之比r1∶r2∶r3=∶∶=∶∶=1∶3∶2,所以三种粒子的轨道半径应该是质子最小,氚核最大,选项C正确。]
带电粒子在匀强磁场中的匀速圆周运动
1.轨迹圆心的两种确定方法
(1)已知粒子运动轨迹上两点的速度方向时,作这两速度的垂线,交点即为圆心,如图所示。
(2)已知粒子轨迹上的两点和其中一点的速度方向时,画出粒子轨迹上的两点连线(即过这两点的圆的弦),作它的中垂线,并画出已知点的速度的垂线,则弦的中垂线与速度的垂线的交点即为圆心,如图所示。
2.三种求半径的方法
(1)根据半径公式r=求解。
(2)根据勾股定理求解,如图所示,若已知出射点相对于入射点侧移了x,则满足r2=d2+(r-x)2。
(3)根据三角函数求解,如图所示,若已知出射速度方向与水平方向的夹角为θ,磁场的宽度为d,则有关系式r=。
3.四种角度关系
(1)如图所示,速度的偏向角(φ)等于圆心角(α)。
(2)圆心角α等于AB弦与速度方向的夹角(弦切角θ)的2倍(φ=α=2θ=ωt)。
(3)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(4)进出同一直边界时速度方向与该直边界的夹角相等。
4.两种求时间的方法
(1)利用圆心角求解,若求出这部分圆弧对应的圆心角,则t=T。
(2)利用弧长s和速度v求解,t=。
【例1】 如图所示,一带电荷量为2.0×10-9 C、质量为1.8×10-16 kg的粒子,在直线上一点O沿与直线夹角为30°方向进入磁感应强度为B的匀强磁场中,经过1.5×10-6s后到达直线上另一点P,求:
(1)粒子做圆周运动的周期;
(2)磁感应强度B的大小;
(3)若O、P之间的距离为0.1 m,则粒子的运动速度多大?
思路点拨:(1)画出粒子由O点到P点的运动轨迹,确定圆心、圆心角。
(2)确定粒子运动时间与周期的关系。
(3)确定粒子运动的半径及其与OP之间的关系。
[解析] 
(1)作出粒子轨迹,如图所示,由图可知粒子由O到P的大圆弧所对的圆心角为300°,则=
周期T=t=×1.5×10-6 s=1.8×10-6 s。
(2)由于粒子做圆周运动所需的向心力为洛伦兹力,得Bqv=,所以B==ω== T=0.314 T。 
(3)由几何知识可知,半径R=OP=0.1 m
故粒子的速度
v==m/s=3.49×105 m/s。
[答案] (1)1.8×10-6 s (2)0.314 T
(3)3.49×105 m/s
上例中,若粒子带电荷量为-2.0×10-9 C,其他条件不变,则粒子经多长时间到达另一点P′?
提示:t=T=0.3×10-6 s。
分析带电粒子在磁场中做圆周运动问题的要点
(1)确定粒子的运动轨迹、半径、圆心角等是解决此类问题的关键。
(2)掌握粒子在匀强磁场中做圆周运动的轨迹半径公式和周期公式是分析此类问题的依据。
1.如图所示,一束电子(电荷量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时速度方向与原来入射方向的夹角是30°,则电子的质量是___________________________,
在磁场中的运动时间是________。
[解析] 电子在磁场中运动只受洛伦兹力作用,故其轨迹是圆弧的一部分,又因为F⊥v,故圆心在电子穿入和穿出磁场时受到洛伦兹力指向交点,如题图所示的O点。
由几何知识可知,CD间圆心角θ=30°,OD为半径。
r==2d,又由r=得m=
电子在磁场中的运动时间t=T
解得t=×=。
[答案]  
回旋加速器
1.磁场的作用:带电粒子以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下做匀速圆周运动。其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D形盒都运动半个周期()后平行电场方向进入电场加速。如图所示。
2.电场的作用:回旋加速器的两个D形盒之间的狭缝区域存在周期性变化的且垂直于两个D形盒正对截面的匀强电场,带电粒子经过该区域时被加速。根据动能定理:qU=ΔEk。
3.交变电压的作用:为保证粒子每次经过狭缝时都被加速,使之能量不断提高,需在狭缝两侧加上跟带电粒子在D形盒中运动周期相同的交变电压。
4.带电粒子的最终能量:由r=知,当带电粒子的运动半径最大时,其速度也最大,若D形盒半径为R,则带电粒子的最终动能Ekm=。
可见,要提高加速粒子的最终能量,应尽可能地增大磁感应强度B和D形盒的半径R。
5.粒子被加速次数的计算:粒子在回旋加速器中被加速的次数n=(U是加速电压的大小),一个周期加速两次。
6.粒子在回旋加速器中运动的时间:在电场中运动的时间为t1,在磁场中运动的时间为t2=T=(n是粒子被加速次数),总时间为t=t1+t2,因为t1?t2,一般认为在盒内的时间近似等于t2。
【例2】 (多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示。设D形盒半径为R,若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是(  )
A.质子被加速后的最大速度不可能超过2πfR
B.质子被加速后的最大速度与加速电场的电压大小无关
C.只要R足够大,质子的速度可以被加速到任意值
D.不改变B和f,该回旋加速器也能用于加速α粒子
思路点拨:(1)粒子通过电场加速,但粒子最终获得的速度与电场无关。
(2)粒子在磁场中做圆周运动的周期等于交变电压的周期。
AB [由evB=m可得回旋加速器加速质子的最大速度为v=。由回旋加速器高频交流电频率等于质子运动的频率,有f=,联立解得质子被加速后的最大速度不可能超过2πfR,选项A、B正确,C错误;由于α粒子在回旋加速器中运动的频率是质子的,不改变B和f,该回旋加速器不能用于加速α粒子,选项D错误。]
求解回旋加速器问题的两点注意
(1)带电粒子通过回旋加速器最终获得的动能Ekm=,与加速的次数以及加速电压U的大小无关。
(2)交变电源的周期与粒子做圆周运动的周期相等。
2.回旋加速器D形盒中央为质子流,D形盒的交流电压为U,静止质子经电场加速后,进入D形盒,其最大轨道半径为R,磁场的磁感应强度为B,质子质量为m。求:
(1)质子最初进入D形盒的动能为多大?
(2)质子经回旋加速器最后得到的动能为多大?
(3)交流电源的频率是多少?
[解析] (1)粒子在电场中加速,由动能定理得
eU=Ek-0
解得Ek=eU。
(2)粒子在回旋加速器的磁场中运动的最大半径为R,由牛顿第二定律得evB=m
质子的最大动能Ekm=mv2
解得Ekm=。
(3)由电源的周期与频率间的关系可得f=
电源的周期与质子的运动周期相同,均为T=
解得f=。
[答案] (1)eU (2) (3)
课 堂 小 结
知 识 脉 络
1.带电粒子在磁场中的匀速圆周运动——定圆心、找半径、求时间。
2.两大应用——质谱仪、回旋加速器。
1.如图所示,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将(  )
A.沿路径a运动,轨迹是圆
B.沿路径a运动,轨迹半径越来越大
C.沿路径a运动,轨迹半径越来越小
D.沿路径b运动,轨迹半径越来越小
B [由左手定则可判断电子运动轨迹向下弯曲。又由r=知,B减小,r越来越大,故电子的径迹是a。故选B。]
2.质量和电荷量都相等的带电粒子M和N以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示,下列说法正确的是(  )
A.M带负电,N带正电
B.M的速率小于N的速率
C.洛伦兹力对M、N做正功
D.M的运行时间大于N的运行时间
A [根据左手定则可知,N带正电,M带负电,A正确;因为r=,而M的轨道半径大于N的轨道半径,所以M的速率大于N的速率,B错误;洛伦兹力不做功,C错误;M和N的运行时间都为t=,D错误。]
3.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为(  )
A.11       B.12
C.121 D.144
D [带电粒子在加速电场中运动时,有qU=mv2,在磁场中偏转时,其半径r=,由以上两式整理得:r=。由于质子与一价正离子的电荷量相同,B1∶B2=1∶12,当半径相等时,解得=144,选项D正确。]
课件50张PPT。第三章 磁场6 带电粒子在匀强磁场中的运动垂直大小匀速圆周 无关 qvB 同位素质量质量不变√ √ √ √ 带电粒子在匀强磁场中的匀速圆周运动 回旋加速器 点击右图进入…Thank you for watching !课时分层作业(二十三)
(时间:40分钟 分值:100分)
[基础达标练]
一、选择题(本题共6小题,每小题6分,共36分)
1.如图是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。云室放置在匀强磁场中,磁场方向垂直照片向里。云室中横放的金属板对粒子的运动起阻碍作用。分析此径迹可知粒子(  )
A.带正电,由下往上运动B.带正电,由上往下运动
C.带负电,由上往下运动 D.带负电,由下往上运动
A [由图可以看出,上方的轨迹半径小,说明粒子的速度小,所以粒子是从下方往上方运动;再根据左手定则,可知粒子带正电,A正确。]
2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为Rp和Rα,周期分别为Tp和Tα。则下列选项正确的是(  )
A.Rp∶Rα=1∶2,Tp∶Tα=1∶2
B.Rp∶Rα=1∶1,Tp∶Tα=1∶1
C.Rp∶Rα=1∶1,Tp∶Tα=1∶2
D.Rp∶Rα=1∶2,Tp∶Tα=1∶1
A [由洛伦兹力提供向心力,则qvB=m,R=,由此得=·=·=。由周期T=得=·==。故选项A正确。]
3.(多选)在垂直纸面的匀强磁场区域里,一离子从原点O沿纸面向x轴正方向飞出,其运动轨迹可能是图中的(  )
A     B     C     D
BC [题中既没给出离子所带电性,又没给出匀强磁场的具体方向,因此可能有多个解。假设磁场方向垂直纸面向外,当离子带正电时,由左手定则可以判断离子刚飞入时所受洛伦兹力方向沿y轴负方向,离子运动轨迹是B;同理可以判断当离子带负电时,运动轨迹是C,无论哪种情况,离子的运动轨迹都是和x轴相切的,A、D错误。]
4.如图所示,有界匀强磁场边界线SP∥MN,速度不同的同种带电粒子从S点沿SP方向同时射入磁场,其中穿过a点的粒子速度v1与MN垂直,穿过b点的粒子,其速度方向与MN成60°角,设两粒子从S到a、b所需的时间分别为t1、t2,则t1∶t2为(  )
A.1∶3 B.4∶3
C.1∶1 D.3∶2
D [画出运动轨迹,过a点的粒子转过90°,过b点的粒子转过60°,故选项D正确。]
5.(多选)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是(  )
A.离子由加速器的中心附近进入加速器
B.离子由加速器的边缘进入加速器
C.离子从磁场中获得能量
D.离子从电场中获得能量
AD [离子从加速器的中间位置进入加速器,最后由加速器边缘飞出,所以A对,B错。加速器中所加的磁场是使离子做匀速圆周运动,所加的电场由交流电提供,它用以加速离子。交流电的周期与离子做圆周运动的周期相同。故C错,D对。]
6.如图所示,有一混合正离子束先后通过正交的匀强电场、匀强磁场区域Ⅰ和匀强磁场区域Ⅱ,如果正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的(  )
A.速度 B.质量
C.电荷量 D.动能
A [离子束在区域Ⅰ中不偏转,一定是qE=qvB,v=,A正确。进入区域Ⅱ后,做匀速圆周运动的半径相同,由r=知,因v、B相同,只能是比荷相同,故B、C、D错误。]
二、非选择题(14分)
7.如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电荷量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求:
(1)匀强电场场强E的大小;
(2)粒子从电场射出时速度v的大小;
(3)粒子在磁场中做匀速圆周运动的半径R。
[解析] (1)匀强电场场强E=。
(2)根据动能定理Uq=mv2-0
解得v=。
(3)根据洛伦兹力提供向心力得Bqv=m
解得R==。
[答案] (1) (2) (3)
[能力提升练]
一、选择题(本题共4小题,每小题6分,共24分)
1.(多选)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍。两个速率相同的电子分别在两磁场区域做圆周运动。与Ⅰ中运动的电子相比,Ⅱ中的电子(  )
A. 运动轨迹的半径是Ⅰ中的k倍
B.加速度的大小是Ⅰ中的k倍
C.做圆周运动的周期是Ⅰ中的k倍
D.做圆周运动的角速度与Ⅰ中的相等
AC [两速率相同的电子在两匀强磁场中做匀速圆周运动,且Ⅰ磁场磁感应强度B1是Ⅱ磁场磁感应强度B2的k倍。
A:由qvB=得r=∝,即Ⅱ中电子运动轨迹的半径是Ⅰ中的k倍,选项A正确。
B:由F合=ma得a==∝B,所以=,选项B错误。
C:由T=得T∝r,所以=k,选项C正确。
D:由ω=得==,选项D错误。
正确选项为A、C。]
2.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段运动轨迹如图所示,运动轨迹上的每一小段都可近似看成圆弧,由于带电粒子使沿途空气电离,粒子的能量逐渐减少(带电荷量不变),从图中情况可以确定(  )
A.粒子从a运动到b,带正电
B.粒子从a运动到b,带负电
C.粒子从b运动到a,带正电
D.粒子从b运动到a,带负电
C [带电粒子做圆周运动的半径r==,随着Ek的减小,半径减小,故粒子从b运动到a;由左手定则知粒子带正电,故选C。]
3.半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场方向射入磁场中,并从B点射出。∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为(  )
A. B.
C. D.
D [
如图所示,由∠AOB=120°可知,弧AB所对圆心角θ=60°,设带电粒子做匀速圆周运动的半径为R。由几何知识知R=r,t====,故D正确。]
4.如图所示是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内存在相互正交的匀强磁场和匀强电场。匀强磁场的磁感应强度为B,匀强电场的电场强度为E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场。下列表述不正确的是(  )
A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过狭缝P的带电粒子的速率等于
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小
D [因同位素原子的化学性质完全相同,无法用化学方法进行分析,故质谱仪就成为同位素分析的重要工具,选项A正确。在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知选项B正确。再由qE=qvB有v=,选项C正确。在磁感应强度为B0的匀强磁场中R=所以=,选项D错误。]
二、非选择题(本题共2小题,共26分)
5.(12分)如图所示,空间存在一方向垂直于纸面、磁感应强度为B的正方形匀强磁场区域,一电荷量为-q的粒子(不计重力)从A点沿AB方向以速度v射入磁场,粒子从BC边上的E点离开磁场,且AE=2BE=2d。求:
(1)磁场的方向;
(2)带电粒子的质量及其在磁场区域的运动时间。
[解析] (1)粒子沿弧AE运动,从带电粒子所受洛伦兹力的方向可判断出磁场的方向垂直纸面向里。
(2)如图所示,连接AE,作线段AE的中垂线,交AD的延长线于O点,O即为圆心,α为弦切角,因AE=2BE=2d,所以α=30°。
θ为圆弧轨迹的圆心角,θ=2α=60°。△AOE为等边三角形,R=2d,
由qvB=m得,m=
T==,
所以粒子在磁场区域的运动时间t==。
[答案] (1)垂直纸面向里 (2) 
6.(14分)如图所示,圆形区域内有垂直于纸向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过t时间从C点射出磁场,OC与OB成60°角。现将带电粒子的速度变为,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间是多少?
[解析] 根据作图法找出速度为v时的粒子轨迹圆圆心O′,由几何关系可得:磁场中的轨迹弧所对圆心角∠AO′C=θ=60°,设圆形磁场的半径为r,
粒子的轨道半径为R1,因此有:qvB=m,tan=,
轨迹圆半径R1=r,
当粒子速度变为时,粒子的轨道半径为R2,因此有:
qB=m,tan=,其轨迹圆半径R2=r,磁场中的轨迹弧所对圆心角:θ1=120°,周期:T=,粒子运动时间:t=T,t2=T,
解得t2=2t。
[答案] 2t