课件43张PPT。第四章 圆与方程4.1 圆的方程
4.1.1 圆的标准方程定点定长圆心半径圆点O求圆的标准方程 点与圆的位置关系 与圆有关的最值问题 点击右图进入…Thank you for watching !
4.1 圆的方程
4.1.1 圆的标准方程
学 习 目 标
核 心 素 养
1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点)
2.会根据已知条件求圆的标准方程.(重点、难点)
3.能准确判断点与圆的位置关系.(易错点)
通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.
1.圆的标准方程
(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.
(2)确定圆的基本要素是圆心和半径,如图所示.
(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.
当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.
思考:平面内确定圆的要素是什么?
[提示] 圆心坐标和半径.
2. 点与圆的位置关系
设点P到圆心的距离为d,半径为r.
d与r的大小
点与圆的位置
d点P在圆内
d=r
点P在圆上
d>r
点P在圆外
1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )
A.(-2,3),1 B.(2,-3),3
C.(-2,3), D.(2,-3),
D [由圆的标准方程可得圆心为(2,-3),半径为.]
2.以原点为圆心,2为半径的圆的标准方程是( )
A.x2+y2=2 B.x2+y2=4
C.(x-2)2+(y-2)2=8 D.x2+y2=
B [以原点为圆心,2为半径的圆,其标准方程为x2+y2=4.]
3.点P(m,5)与圆x2+y2=24的位置关系是( )
A.在圆外 B.在圆内
C.在圆上 D.不确定
A [∵m2+25>24,∴点P在圆外.]
4.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.
(x+2)2+y2=10 [因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,∴m=10.即圆的方程为(x+2)2+y2=10.]
求圆的标准方程
【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.
思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.
[解] 法一:设所求圆的标准方程为
(x-a)2+(y-b)2=r2,
由已知条件知
解此方程组,得
故所求圆的标准方程为(x-1)2+(y-1)2=4.
法二:设点C为圆心,∵点C在直线x+y-2=0上,
∴可设点C的坐标为(a,2-a).
又∵该圆经过A,B两点,
∴|CA|=|CB|.
∴=,
解得a=1.
∴圆心坐标为C(1,1),半径长r=|CA|=2.
故所求圆的标准方程为(x-1)2+(y-1)2=4.
法三:由已知可得线段AB的中点坐标为(0,0),
kAB==-1,
所以弦AB的垂直平分线的斜率为k=1,
所以AB的垂直平分线的方程为y-0=1·(x-0),
即y=x.则圆心是直线y=x与x+y-2=0的交点,
由得
即圆心为(1,1),圆的半径为=2,
故所求圆的标准方程为(x-1)2+(y-1)2=4.
确定圆的方程的方法:
确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.
1.求下列圆的标准方程:
(1)圆心是(4,0),且过点(2,2);
(2)圆心在y轴上,半径为5,且过点(3,-4);
(3)过点P(2,-1)和直线x-y=1相切,并且圆心在直线y=-2x上.
[解] (1)r2=(2-4)2+(2-0)2=8,
∴圆的标准方程为(x-4)2+y2=8.
(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52,
∴b=0或b=-8,∴圆心为(0,0)或(0,-8),又r=5,
∴圆的标准方程为x2+y2=25或x2+(y+8)2=25.
(3)∵圆心在y=-2x上,设圆心为(a,-2a),
设圆心到直线x-y-1=0的距离为r.
∴r=, ①
又圆过点P(2,-1),∴r2=(2-a)2+(-1+2a)2, ②
由①②得或
∴圆的标准方程为(x-1)2+(y+2)2=2或(x-9)2+(y+18)2=338.
点与圆的位置关系
【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P1(-1,0),P2(1,-1),P3(3,-4)和圆的位置关系.
[解] 因为圆心是C(-3,-4),且经过原点,
所以圆的半径r==5,
所以圆的标准方程是(x+3)2+(y+4)2=25.
因为|P1C|===2<5,
所以P1(-1,0)在圆内;
因为|P2C|==5,
所以P2(1,-1)在圆上;
因为|P3C|==6>5,
所以P3(3,-4)在圆外.
1.判断点与圆的位置关系的方法
(1)只需计算该点与圆的圆心距离,与半径作比较即可;
(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.
2.灵活运用
若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.
2.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.
[解] 由题意,点A在圆C上或圆C的外部,
∴(1-a)2+(2+a)2≥2a2,
∴2a+5≥0,∴a≥-.∵a≠0,
∴a的取值范围为∪(0,+∞).
与圆有关的最值问题
[探究问题]
1.怎样求圆外一点到圆的最大距离和最小距离?
[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.
2.若点P(x, y)是圆C:(x-2)2+(y+2)2=1上的任一点,如何求点P到直线x-y=0的距离的最大值和最小值?
[提示] 可先求出圆心(2,-2)到直线x-y=0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.
【例3】 已知x和y满足(x+1)2+y2=,试求x2+y2的最值.
思路探究:首先观察x、y满足的条件,其次观察所求式子的几何意义,求出其最值.
[解] 由题意知x2+y2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d=1,故圆上的点到坐标原点的最大距离为1+=,最小距离为1-=.因此x2+y2的最大值和最小值分别为和.
1.本例条件不变,试求的取值范围.
[解] 设k=,变形为k=,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,
由k=,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即≤,解得-≤k≤.
即的取值范围是.
2.本例条件不变,试求x+y的最值.
[解] 令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时在y轴上的截距取得最大值和最小值,此时有=,解得b=±-1,即最大值为-1,最小值为--1.
与圆有关的最值问题的常见类型及解法:
(1)形如u=形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.
(2)形如l=ax+by形式的最值问题,可转化为动直线y=- x+截距的最值问题.
(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.
1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.
2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.
3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.
1.圆心为(0,4),且过点(3,0)的圆的方程为( )
A.x2+(y-4)2=25 B.x2+(y+4)2=25
C.(x-4)2+y2=25 D.(x+4)2+y2=25
A [由题意,圆的半径r==5,则圆的方程为x2+(y-4)2=25.]
2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )
A.6 B.4 C.3 D.2
B [由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]
3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.
(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]
4.点(5+1,)在圆(x-1)2+y2=26的内部,则a的取值范围是________.
[0,1) [由于点在圆的内部,所以(5+1-1)2+()2<26,即26a<26,又a≥0,解得0≤a<1.]
5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.
[解] 易知△ABC是直角三角形,∠B=90°,
所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,
即r=,所以外接圆的方程为(x-2)2+(y-2)2=5.
课时分层作业(二十三) 圆的标准方程
(建议用时:45分钟)
[基础达标练]
一、选择题
1.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是( )
A.(x-1)2+(y-2)2=10
B.(x-1)2+(y-2)2=100
C.(x-1)2+(y-2)2=5
D.(x-1)2+(y-2)2=25
D [圆心坐标为(1,2),半径r==5,故所求圆的方程为(x-1)2+(y-2)2=25.]
2.与圆(x-3)2+(y+2)2=4关于直线x=-1对称的圆的方程为( )
A.(x+5)2+(y+2)2=4 B.(x-3)2+(y+2)2=4
C.(x-5)2+(y+2)2=4 D.(x-3)2+y2=4
A [已知圆的圆心(3,-2)关于直线x=-1的对称点为(-5,-2),∴所求圆的方程为(x+5)2+(y+2)2=4.]
3.方程y=表示的曲线是( )
A.一条射线 B.一个圆
C.两条射线 D.半个圆
D [y=可化为x2+y2=9(y≥0),故表示的曲线为圆x2+y2=9位于x轴及其上方的半个圆.]
4.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )
A.|a|< B.|a|<1
C.|a|≤ D.|a|≤1
D [由已知,得(4a)2+(3a)2≤25,∴a2≤1,∴|a|≤1.]
5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为( )
A.(x-1)2+(y+2)2=5 B.(x+1)2+(y+2)2=5
C.(x+1)2+(y-2)2=5 D.(x-1)2+(y-2)2=5
C [直线方程变为(x+1)a-x-y+1=0.
由得∴C(-1,2),
∴所求圆的方程为(x+1)2+(y-2)2=5.]
二、填空题
6.圆心为直线x-y+2=0与直线2x+y-8=0的交点,且过原点的圆的标准方程是________.
(x-2)2+(y-4)2=20 [由可得,即圆心为(2,4),从而r==2,故圆的标准方程为(x-2)2+(y-4)2=20.]
7.若直线y=ax+b经过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于第________象限.
四 [因为直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即-a>0,-b<0,所以圆心(-a,-b)在第四象限.]
8.已知点P(x,y)在圆x2+y2=1上,则的最大值为________.
1+ [的几何意义是圆上的点P(x,y)到点(1,1)的距离,因此最大值为+1.]
三、解答题
9.已知直线l与圆C相交于点P(1,0)和点Q(0,1).
(1)求圆心所在的直线方程;
(2)若圆C的半径为1,求圆C的方程.
[解] (1)PQ的方程为x+y-1=0,
PQ中点M,kPQ=-1,
所以圆心所在的直线方程为y=x.
(2)由条件设圆的方程为(x-a)2+(y-b)2=1.
由圆过P,Q点得
解得或
所以圆C方程为:x2+y2=1或(x-1)2+(y-1)2=1.
10.已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.
[解] 法一:如图所示,由题设|AC|=r=5,|AB|=8,
∴|AO|=4.在Rt△AOC中,
|OC|==
=3.
设点C坐标为(a,0),则|OC|=|a|=3,∴a=±3.
∴所求圆的方程为(x+3)2+y2=25或(x-3)2+y2=25.
法二:由题意设所求圆的方程为(x-a)2+y2=25.
∵圆截y轴线段长为8,∴圆过点A(0,4).
代入方程得a2+16=25,∴a=±3.
∴所求圆的方程为(x+3)2+y2=25或(x-3)2+y2=25.
[能力提升练]
1.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )
A.2 B.1 C. D.
B [由几何意义可知最小值为14-=1.]
2.若圆心在x轴上,半径为的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C的方程是________.
(x+5)2+y2=5 [如图所示,设圆心C(a,0),则圆心C到直线x+2y=0的距离为=,解得a=-5,a=5(舍去),∴圆心是(-5,0).故圆的方程是(x+5)2+y2=5.]