课件42张PPT。第四章 圆与方程4.1 圆的方程
4.1.2 圆的一般方程圆的一般方程的概念 求圆的一般方程 与圆有关的轨迹方程问题 点击右图进入…Thank you for watching !4.1.2 圆的一般方程
学 习 目 标
核 心 素 养
1.正确理解圆的方程的形式及特点,会由一般式求圆心和半径.(重点)
2.会在不同条件下求圆的一般式方程.(重点)
1. 通过圆的一般方程的推导,提升逻辑推理、数学运算的数学素养.
2. 通过学习圆的一般方程的应用,培养数学运算的数学素养.
圆的一般方程
(1)圆的一般方程的概念:
当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程.
(2)圆的一般方程对应的圆心和半径:
圆的一般方程x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)表示的圆的圆心为,半径长为.
思考:所有形如x2+y2+Dx+Ey+F=0的二元二次方程都表示圆吗?
[提示] 不是,只有当D2+E2-4F>0时才表示圆.
1.圆x2+y2-4x+6y=0的圆心坐标是( )
A.(2,3) B.(-2,3)
C.(-2,-3) D.(2,-3)
D [-=2,-=-3,∴圆心坐标是(2,-3).]
2.方程x2+y2-x+y+k=0表示一个圆,则实数k的取值范围为( )
A.k≤ B.k=
C.k≥ D.k<
D [方程表示圆?1+1-4k>0?k<.]
3.经过圆x2+2x+y2=0的圆心,且与直线x+y=0垂直的直线方程是( )
A.x+y+1=0 B.x+y-1=0
C.x-y-1=0 D.x-y+1=0
D [由题意知圆心坐标是(-1,0),故所求直线方程为y=x+1,即x-y+1=0.]
4.圆x2+y2+2x-4y+m=0的直径为3,则m的值为________.
[因(x+1)2+(y-2)2=5-m,∴r==,∴m=.]
圆的一般方程的概念
【例1】 (1)若x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是( )
A.R B.(-∞,1)
C.(-∞,1] D.[1,+∞)
(2)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.
(1)B (2)(-2,-4) 5 [(1)由方程x2+y2-4x+2y+5k=0可得(x-2)2+(y+1)2=5-5k,此方程表示圆,则5-5k>0,解得k<1.故实数k的取值范围是(-∞,1).故选B.
(2)由题可得a2=a+2,解得a=-1或a=2.当a=-1时,方程为x2+y2+4x+8y-5=0,表示圆,故圆心为(-2,-4),半径为5.当a=2时,方程不表示圆.]
形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有如下两种方法:
(1)由圆的一般方程的定义令D2+E2-4F>0,成立则表示圆,否则不表示圆.
(2)将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey+F=0这种标准形式,若不是,则要化为这种形式再求解.
1.下列方程能否表示圆?若能表示圆,求出圆心和半径.
(1)2x2+y2-7y+5=0;
(2)x2-xy+y2+6x+7y=0;
(3)x2+y2-2x-4y+10=0;
(4)2x2+2y2-5x=0.
[解] (1)∵方程2x2+y2-7y+5=0中x2与y2的系数不相同,
∴它不能表示圆.
(2)∵方程x2-xy+y2+6x+7y=0中含有xy这样的项.
∴它不能表示圆.
(3)方程x2+y2-2x-4y+10=0化为(x-1)2+(y-2)2=-5,
∴它不能表示圆.
(4)方程2x2+2y2-5x=0化为+y2=,
∴它表示以为圆心,为半径长的圆.
求圆的一般方程
【例2】 已知△ABC的三个顶点为A(1,4),
B(-2,3),C(4,-5),求△ABC的外接圆方程、外心坐标和外接圆半径.
[解] 法一:设△ABC的外接圆方程为
x2+y2+Dx+Ey+F=0,
∵A,B,C在圆上,
∴
∴
∴△ABC的外接圆方程为x2+y2-2x+2y-23=0,
即(x-1)2+(y+1)2=25.
∴外心坐标为(1,-1),外接圆半径为5.
法二:∵kAB==,kAC==-3,
∴kAB·kAC=-1,∴AB⊥AC.
∴△ABC是以角A为直角的直角三角形,
∴外心是线段BC的中点,
坐标为(1,-1),r=|BC|=5.
∴外接圆方程为(x-1)2+(y+1)2=25.
待定系数法求圆的方程的解题策略:
(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r.
(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D、E、F.
2.求经过点A(-2,-4)且与直线x+3y-26=0相切于点B(8,6)的圆的方程.
[解] 设所求圆的方程为x2+y2+Dx+Ey+F=0,
则圆心坐标为.
∵圆与x+3y-26=0相切于点B,∴·=-1,
即E-3D-36=0. ①
∵(-2,-4),(8,6)在圆上,
∴2D+4E-F-20=0, ②
8D+6E+F+100=0. ③
联立①②③,解得D=-11,E=3,F=-30,
故所求圆的方程为x2+y2-11x+3y-30=0.
与圆有关的轨迹方程问题
[探究问题]
1.已知点A(-1,0), B(1,0),则线段AB的中点的轨迹是什么?其方程又是什么?
[提示] 线段AB的中点轨迹即为线段AB的垂直平分线,其方程为x=0.
2.已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍,你能求出点M的轨迹方程吗?
[提示] 设M(x,y),由题意有=2,整理得点M的轨迹方程为x2+y2=16.
【例3】 点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上的动点.
(1)求线段AP的中点M的轨迹方程;
(2)若∠PBQ=90°,求线段PQ的中点N的轨迹方程.
思路探究:(1)→
→
(2)→→
→
[解] (1)设线段AP的中点为M(x,y),
由中点公式得点P坐标为P(2x-2,2y).
∵点P在圆x2+y2=4上,∴(2x-2)2+(2y)2=4,
故线段AP的中点M的轨迹方程为(x-1)2+y2=1.
(2)设线段PQ的中点为N(x,y),
在Rt△PBQ中,|PN|=|BN|.
设O为坐标原点,连接ON(图略),则ON⊥PQ,
∴|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
∴x2+y2+(x-1)2+(y-1)2=4,
故线段PQ的中点N的轨迹方程为x2+y2-x-y-1=0.
求轨迹方程的一般步骤:
(1)建立适当坐标系,设出动点M 的坐标(x,y);
(2)列出点M 满足条件的集合;
(3)用坐标表示上述条件,列出方程;
(4)将上述方程化简;
(5)证明化简后的以方程的解为坐标的点都是轨迹上的点.
3.已知△ABC的边AB长为4,若BC边上的中线为定长3,求顶点C的轨迹方程.
[解] 以直线AB为x轴,AB的中垂线为y轴建立坐标系(如图),则A(-2,0),B(2,0),设C(x,y),BC中点D(x0,y0).
∴ ①
∵|AD|=3,∴(x0+2)2+y=9. ②
将①代入②,整理得(x+6)2+y2=36.
∵点C不能在x轴上,∴y≠0.
综上,点C的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点.
轨迹方程为(x+6)2+y2=36(y≠0).
1.圆的一般方程x2+y2+Dx+Ey+F=0,来源于圆的标准方程(x-a)2+(y-b)2=r2.在应用时,注意它们之间的相互转化及表示圆的条件.
2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况,设出方程,以便简化解题过程,体现数学运算的核心素养.
3.涉及到的曲线的轨迹问题,要求作简单的了解,能够求出简单的曲线的轨迹方程,并掌握求轨迹方程的一般步骤.
1.方程2x2+2y2-4x+8y+10=0表示的图形是( )
A.一个点 B.一个圆
C.一条直线 D.不存在
A [方程2x2+2y2-4x+8y+10=0,可化为x2+y2-2x+4y+5=0,即(x-1)2+(y+2)2=0,∴方程2x2+2y2-4x+8y+10=0表示点(1,-2).]
2.点P(1,-2)和圆C:x2+y2+m2x+y+m2=0的位置关系是________.
点P在圆C外部 [将点P(1,-2)代入圆的方程,得1+4+m2-2+m2=2m2+3>0,∴点P在圆C外部.]
3.圆心是(-3,4),经过点M(5,1)的圆的一般方程为________.
x2+y2+6x-8y-48=0 [只要求出圆的半径即得圆的标准方程,再展开化为一般式方程即可.]
4.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,4为半径的圆,则F=________.
4 [由题意,知D=-4,E=8,r==4,∴F=4.]
5.已知A(2,2),B(5,3),C(3,-1),求△ABC的外接圆的方程.
[解] 设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,
由题意得
解得即△ABC的外接圆方程为x2+y2-8x-2y+12=0.
课时分层作业(二十四) 圆的一般方程
(建议用时:60分钟)
[基础达标练]
一、选择题
1.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( )
A.-1 B.1 C.3 D.-3
B [圆的方程可变为(x+1)2+(y-2)2=5,因为直线经过圆的圆心,所以3×(-1)+2+a=0,即a=1.]
2.圆的方程为(x-1)(x+2)+(y-2)(y+4)=0,则圆心坐标为( )
A.(1,-1) B.
C.(-1,2) D.
D [圆的方程(x-1)(x+2)+(y-2)(y+4)=0可化为x2+y2+x+2y-10=0,∴圆心坐标为.]
3.如果圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)关于直线y=x对称,则有( )
A.D+E=0 B.D=E
C.D=F D.E=F
B [由圆的对称性知,圆心在直线y=x上,故有-=-,即D=E.]
4.如果圆x2+y2+ax+by+c=0(a,b,c不全为零)与y轴相切于原点,那么( )
A.a=0,b≠0,c≠0 B.b=c=0,a≠0
C.a=c=0,b≠0 D.a=b=0,c≠0
B [符合条件的圆方程为+y2=,即x2+y2+ax=0,∴b=0,a≠0,c=0.]
5.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程是( )
A.(x-1)2+y2=4 B.(x-1)2+y2=2
C.y2=2x D.y2=-2x
B [由题意知,圆心(1,0)到P点的距离为,所以点P在以(1,0)为圆心,以为半径的圆上,所以点P的轨迹方程是(x-1)2+y2=2,故选B.]
二、填空题
6.已知圆C:x2+y2-2x+2y-3=0,AB为圆C的一条直径,点A(0,1),则点B的坐标为________.
(2,-3) [由x2+y2-2x+2y-3=0得,(x-1)2+(y+1)2=5,所以圆心C(1,-1).设B(x0,y0),又A(0,1),由中点坐标公式得解得
所以点B的坐标为(2,-3).]
7.关于方程x2+y2+2ax-2ay=0表示的圆,下列叙述中:①圆心在直线y=-x上;②其圆心在x轴上;③过原点;④半径为a.其中叙述正确的是________.(要求写出所有正确命题的序号)
①③ [将圆的方程化为标准方程可知圆心为(-a,a),半径为|a|,故①③正确.]
8.已知A,B是圆O:x2+y2=16上的两点,且│AB│=6,若以AB为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程是________.
(x-1)2+(y+1)2=9 [设圆心为M(x,y),由│AB│=6知,圆M的半径r=3,则│MC│=3,即=3,所以(x-1)2+(y+1)2=9.]
三、解答题
9.已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y-1=0上,且圆心在第二象限,半径长为,求圆的一般方程.
[解] 圆心C,
∵圆心在直线x+y-1=0上,
∴---1=0,即D+E=-2. ①
又∵半径长r==,
∴D2+E2=20. ②
由①②可得或
又∵圆心在第二象限,∴-<0,即D>0.
则
故圆的一般方程为x2+y2+2x-4y+3=0.
10.已知圆C:x2+y2-4x-14y+45=0,及点Q(-2,3).
(1)P(a,a+1)在圆上,求线段PQ的长及直线PQ的斜率;
(2)若M为圆C上任一点,求|MQ|的最大值和最小值.
[解] (1)∵点P(a,a+1)在圆上,
∴a2+(a+1)2-4a-14(a+1)+45=0,
∴a=4,P(4,5),
∴|PQ|==2,
kPQ==.
(2)∵圆心C坐标为(2,7),
∴|QC|==4,
圆的半径是2,点Q在圆外,
∴|MQ|max=4+2=6,
|MQ|min=4-2=2.
[能力提升练]
1.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是( )
A. B. C. D.
A [圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则圆心在直线上,求得a+b=1,ab=a(1-a)=-a2+a=-+≤,ab的取值范围是,故选A.]
2.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于( )
A.π B.4π C.8π D.9π
B [设动点P的轨迹坐标为(x,y),则由|PA|=2|PB|,知=2,化简得(x-2)2+y2=4,得轨迹曲线为以(2,0)为圆心,以2为半径的圆,该圆面积为4π.]
3.圆心在直线y=x上,且经过点A(-1,1)、B(3,-1)的圆的一般方程是________.
x2+y2-4x-4y-2=0 [设圆的方程为x2+y2+Dx+Ey+F=0,则圆心是, 由题意知,
解得D=E=-4,F=-2,即所求圆的一般方程是x2+y2-4x-4y-2=0.]
4.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC的面积最小值是________.
3- [直线AB的方程为x-y+2=0,圆心到直线AB的距离为d==,所以圆上任意一点到直线AB的最小距离为-1,S△ABC=×|AB|×=×2×=3-.]
5.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示的图形是圆.
(1)求t的取值范围;
(2)求其中面积最大的圆的方程;
(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.
[解] (1)已知方程可化为
(x-t-3)2+(y+1-4t2)2=-7t2+6t+1,
∴r2=-7t2+6t+1>0,∴-<t<1.
即t的取值范围是.
(2)r==.
当t=∈时,rmax=,
此时圆的面积最大,对应的圆的方程是+=.
(3)当且仅当32+(4t2)2-2(t+3)×3+2(1-4t2)·4t2+16t4+9<0时,点P恒在圆内,化简得8t2-6t<0,
即0<t<.故t的取值范围是.