第三章函数 第13节 平面直角坐标系和函数的概念
■考点1:用坐标表示位置
平面直角坐标系的相关内容:
(1)平面直角坐标系的有关概念:在平面内两条 且有公共原点的数轴组成了平面直角坐标系.水平的数轴称为横轴(或x轴),竖直的数轴称为纵轴(或y轴).两条数轴把平面分成四个部分,这四个部分称作四个 【来源:21cnj*y.co*m】
(2)点的坐标:在平面内,任意一个点都可以用一组 来表示,如A(a,b).(a,b)即为点A的坐标,其中a是点A的 坐标,B是点A的 坐标.
■考点2:平面直角坐标系内点的坐标特征
【设点P(a,b)】:
①各象限点的特征:
第一象限 ; 第二象限 ;
第三象限 ; 第四象限
②特殊位置点的特征:
若点P在x轴上,则 ;
若点P在y轴上,则 ;
若点P在一、三象限角平分线上,则 ;
若点P在二、四象限角平分线上,则 .
■考点3:平面直角坐标系中的对称点的坐标
点P(a,b)关于x轴的对称点P’
点P(a,b)关于y轴的对称点P’
点P(a,b)关于原点的对称点P’ .
■考点4.坐标与图形变化
点的坐标延伸【设点P(a,b)、点M(c,d)】:
①点P到y轴的距离为 ,到y轴的距离为 .到原点的距离为.
②1)将点P沿水平方向平移m(m>0)个单位后坐标变化情况为:
点P沿水平向右方向平移m(m>0)个单位后坐标为(a+m,b);
点P沿水平向左方向平移m(m>0)个单位后坐标为(a-m,b);
2)将点P沿竖直方向平移n(n>0)个单位后坐标变化情况为:
点P沿竖直方向向上平移n(n>0)个单位后坐标为(a,b+n);
点P沿竖直方向向下平移n(n>0)个单位后坐标为(a,b—n).
③若直线PM平行x轴,则b=d;若直线PM平行y轴,则a=c;
④点P到点M的距离:PM=
⑤线段PM的中点坐标:()
■考点5..函数自变量的取值范围
①函数表达式是整式,自变量的取值是__ __;
②函数表达式是分式,自变量的取值要使得__ __;
③函数表达式是偶次根式,自变量的取值要使得__ __为非负数;
④来源于实际问题的函数,自变量的取值要使得实际问题有意义、式子有意义.
函数的有关知识及其图象:
(1)常量与变量:在某一变化过程中,始终保持不变的量叫做常量,数值发生 变化 的量叫做变量. 21教育网
(2)函数的定义:一般的,在某个变化过程中如果有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,那么x是自变量,y是x的函数.
(3)函数的表示方法:①解析式法;② 图象法;③列表法.
(4)函数解析式(用来表示函数关系的数学式子叫做解析式)与变自量的取值范围:
(5)描点法画图像的一般步骤:列表、描点、连线
■考点6.函数图象的判断
(1)分析实际问题判断函数图象的方法:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;
②找特殊点:即交点或转折点,说明图象在此点处将发生变化;
③判断图象趋势:判断出函数的增减性,图象的倾斜方向.
(2)以几何图形(动点)为背景判断函数图象的方法:
①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.
■考点1:用坐标表示位置
◇典例:
(2018年北京市)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).
上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④
【考点】坐标确定位置
【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.
解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.
故选:C.
【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.
◆变式训练
(2018.绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为 .
■考点2:平面直角坐标系内点的坐标特征
◇典例:
(2018辽宁大连)在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标
【分析】直接利用第二象限内点的符号特点进而得出答案.
解:点(﹣3,2)所在的象限在第二象限.
故选:B.
【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2·1·c·n·j·y
【方法技巧规律】首先要掌握四个象限的符号特征,再根据平面直角坐标系中各象限点的特征,判断其所在象限,
◆变式训练
(2018年浙江省杭州市临安市)P(3,﹣4)到x轴的距离是 .
■考点3:平面直角坐标系中的对称点的坐标
◇典例
(2018年广西贵港市)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
◆变式训练
(2018年山东省枣庄市)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
■考点4.坐标与图形变化
◇典例:
(2019年辽宁省大连市)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【考点】坐标与图形变化﹣平移
【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.
解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),
故选:A.
【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律:横坐标右移加,左移减,纵坐标上移加,下移减是解题的关键.
◆变式训练
(2019年湖北省黄冈市)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是( )
A.(6,1) B.(﹣2,1) C.(2,5) D.(2,﹣3)
■考点5.函数自变量的取值范围
◇典例
(2018年内蒙古包头市)函数y=中,自变量x的取值范围是( )
A.x≠1 B.x>0 C.x≥1 D.x>1
【考点】函数自变量的取值范围
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x﹣1≠0,
解得x>1.
故选:D.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
◆变式训练
(2019年四川内江市)在函数y=+中,自变量x的取值范围是( )
A.x<4 B.x≥4且x≠﹣3 C.x>4 D.x≤4且x≠﹣3
■考点6.函数图象的判断
◇典例
(2018山东滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
A. B. C. D.
【考点】函数的图象
【分析】根据定义可将函数进行化简.
解:当﹣1≤x<0,[x]=﹣1,y=x+1
当0≤x<1时,[x]=0,y=x
当1≤x<2时,[x]=1,y=x﹣1
……
故选:A.
【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.
◆变式训练
(2018年宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
A. B. C. D.
1.(2019年湖南省株洲市)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.(2019年山东省滨州市(a卷))在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(﹣1,1) B.(3,1) C.(4,﹣4) D.(4,0)
3.(2019年广西柳州市)已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是( )
A.y=4x(x≥0) B.y=4x﹣3(x≥)
C.y=3﹣4x(x≥0) D.y=3﹣4x(0≤x≤)
4.(2019年湖南省湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( )
A.(0,5) B.(5,1) C.(2,4) D.(4,2)
5.(2019年四川省泸州市)函数y=的自变量x的取值范围是( )
A.x<2 B.x≤2 C.x>2 D.x≥2
6.(2018年内蒙古呼和浩特市)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气( )
A.惊蛰 B.小满 C.立秋 D.大寒
7.(2018年黑龙江省齐齐哈尔市)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )
A.0点时气温达到最低
B.最低气温是零下4℃
C.0点到14点之间气温持续上升
D.最高气温是8℃
8.(2019年浙江省杭州市)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
9.(2019年湖北省孝感市)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L,在随后的8min内既进水又出水,容器内存水12L,接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
A. B. C.D.
10.(2019年山东省潍坊市)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
选择题
1.(2019年山东省枣庄市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)
2.(2019年四川省成都市)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为( )
A.(2,3) B.(﹣6,3) C.(﹣2,7) D.(﹣2.﹣1)
3.(2019年湖南省岳阳市)函数y=中,自变量x的取值范围是( )
A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0
4.(2019年山东省东营市)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )
A.乙队率先到达终点
B.甲队比乙队多走了126米
C.在47.8秒时,两队所走路程相等
D.从出发到13.7秒的时间段内,乙队的速度慢
5.(2019年湖北省随州市)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )
A. B.
C. D.
6.(2019年黑龙江省齐齐哈尔、黑河市)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战
士们离营地的距离与时间之间函数关系的是( )
A. B. C.D.
7.(2019年四川省自贡市)均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的( )
A. B. C. D.
8.(2019年山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是( )
A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)
9.(2018年重庆市(B卷))根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B.7 C.﹣9 D.﹣7
10.(2019年四川省广元市)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A.B.C.D.
11.(2019年广西玉林市)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=﹣,则y=2⊕x(x≠0)的图象是( )
A. B. C.D.
12.(2019年广西百色市)阅读理解:
已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.
如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦PA的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.
设B(m,n),则m,n满足的等式是( )
m2+n2=9 B.()2+()2=9
C.(2m+3)2+(2n)2=3 D.(2m+3)2+4n2=9
13.(2019年湖南省衡阳市)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为( )
A.B.C.D.
14.(2019年山东省菏泽市)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是( )
A. B. C.D.
15.(2019年浙江省衢州市)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是( )
A. B. C.D.
16.(2019年湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为( )
A.﹣2 B.﹣1 C.0 D.1
填空题
17.(2019年黑龙江省哈尔滨市)在函数中,自变量的取值范围是__________.
18.(2019年山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 .
19.(2019年四川省泸州市)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b的值是 .
20.(2019年湖南省湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m= .
21.(2019年四川省乐山市)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是 .
22.(2019年四川省成都市)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为 .
解答题
23.(2019年甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市、陇南市、庆阳市)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点__________.
24.(2019年广西桂林市)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1,
(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3),
(3)在(2)的条件下,直接写出点A1的坐标.
25.(2019年黑龙江省齐齐哈尔、黑河市)甲、乙两地间的直线公路长为千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发小时,途中轿车出现了故障,停下维修,货车仍继续行驶.小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离(千米)与轿车所用的时间(小时)的关系如图所示,请结合图象解答下列问题:
(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;值为_______.
(2)求轿车距其出发地的距离(千米)与所用时间(小时)之间的函数关系式并写出自变量的取值范围;
(3)请直接写出货车出发多长时间两车相距千米.
第三章函数 第13节 平面直角坐标系和函数的概念
■考点1:用坐标表示位置
平面直角坐标系的相关内容:
(1)平面直角坐标系的有关概念:在平面内两条互相垂直且有公共原点的数轴组成了平面直角坐标系.水平的数轴称为横轴(或x轴),竖直的数轴称为纵轴(或y轴).两条数轴把平面分成四个部分,这四个部分称作四个象限【来源:21cnj*y.co*m】
(2)点的坐标:在平面内,任意一个点都可以用一组有序实数对来表示,如A(a,b).(a,b)即为点A的坐标,其中a是点A的 横 坐标,B是点A的 纵坐标.
■考点2:平面直角坐标系内点的坐标特征
【设点P(a,b)】:
①各象限点的特征:
第一象限(+,+) ; 第二象限(—,+) ;
第三象限(一,一) ; 第四象限(+,一).
②特殊位置点的特征:
若点P在x轴上,则b=0 ;
若点P在y轴上,则a=0 ;
若点P在一、三象限角平分线上,则a=b ;
若点P在二、四象限角平分线上,则a+b=0.
■考点3:平面直角坐标系中的对称点的坐标
点P(a,b)关于x轴的对称点P’(a,一b)
点P(a,b)关于y轴的对称点P’(一a,b)
点P(a,b)关于原点的对称点P’(一a,一b) .
■考点4.坐标与图形变化
点的坐标延伸【设点P(a,b)、点M(c,d)】:
①点P到y轴的距离为,到y轴的距离为.到原点的距离为.
②1)将点P沿水平方向平移m(m>0)个单位后坐标变化情况为:
点P沿水平向右方向平移m(m>0)个单位后坐标为(a+m,b);
点P沿水平向左方向平移m(m>0)个单位后坐标为(a-m,b);
2)将点P沿竖直方向平移n(n>0)个单位后坐标变化情况为:
点P沿竖直方向向上平移n(n>0)个单位后坐标为(a,b+n);
点P沿竖直方向向下平移n(n>0)个单位后坐标为(a,b—n).
③若直线PM平行x轴,则b=d;若直线PM平行y轴,则a=c;
④点P到点M的距离:PM=
⑤线段PM的中点坐标:()
■考点5.函数自变量的取值范围
①函数表达式是整式,自变量的取值是__全体实数__;
②函数表达式是分式,自变量的取值要使得__分母不等于0__;
③函数表达式是偶次根式,自变量的取值要使得__被开方数__为非负数;
④来源于实际问题的函数,自变量的取值要使得实际问题有意义、式子有意义.
函数的有关知识及其图象:
(1)常量与变量:在某一变化过程中,始终保持不变的量叫做常量,数值发生 变化 的量叫做变量. 21·世纪*教育网
(2)函数的定义:一般的,在某个变化过程中如果有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,那么x是自变量,y是x的函数.
(3)函数的表示方法:①解析式法;② 图象法;③列表法.
(4)函数解析式(用来表示函数关系的数学式子叫做解析式)与变自量的取值范围:
(5)描点法画图像的一般步骤:列表、描点、连线
■考点6.函数图象的判断
(1)分析实际问题判断函数图象的方法:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;
②找特殊点:即交点或转折点,说明图象在此点处将发生变化;
③判断图象趋势:判断出函数的增减性,图象的倾斜方向.
(2)以几何图形(动点)为背景判断函数图象的方法:
①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.
■考点1:用坐标表示位置
◇典例:
(2018年北京市)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).
上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④
【考点】坐标确定位置
【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.
解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.
故选:C.
【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.
◆变式训练
(2018.绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为 .
【考点】坐标确定位置
【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
解:“卒”的坐标为(﹣2,﹣2),
故答案为:(﹣2,﹣2).
【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.
■考点2:平面直角坐标系内点的坐标特征
◇典例:
(2018辽宁大连)在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标
【分析】直接利用第二象限内点的符号特点进而得出答案.
解:点(﹣3,2)所在的象限在第二象限.
故选:B.
【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2·1·c·n·j·y
【方法技巧规律】首先要掌握四个象限的符号特征,再根据平面直角坐标系中各象限点的特征,判断其所在象限,
◆变式训练
(2018年浙江省杭州市临安市)P(3,﹣4)到x轴的距离是 .
【考点】点的坐标
【分析】根据点在坐标系中坐标的几何意义即可解答.
解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.
故答案为:4.
【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.
■考点3:平面直角坐标系中的对称点的坐标
◇典例
(2018年广西贵港市)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
【考点】关于x、y轴的对称点的坐标特点
【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
∴1+m=3、1﹣n=2,
解得:m=2、n=﹣1,
所以m+n=2﹣1=1,
故选:D.
【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
◆变式训练
(2018年山东省枣庄市)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
【考点】坐标与图形变化﹣平移,关于x轴对称点的坐标
【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.
解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),
则点B关于x轴的对称点B′的坐标是(2,2),
故选:B.
【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.
■考点4.坐标与图形变化
◇典例:
(2019年辽宁省大连市)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【考点】坐标与图形变化﹣平移
【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.
解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),
故选:A.
【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律:横坐标右移加,左移减,纵坐标上移加,下移减是解题的关键.
◆变式训练
(2019年湖北省黄冈市)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是( )
A.(6,1) B.(﹣2,1) C.(2,5) D.(2,﹣3)
【考点】坐标与图形变化﹣平移
【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.
解:∵点A的坐标为(2,1),
∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),
故选:D.
【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减.正确掌握规律是解题的关键.
■考点5.函数自变量的取值范围
◇典例
(2018年内蒙古包头市)函数y=中,自变量x的取值范围是( )
A.x≠1 B.x>0 C.x≥1 D.x>1
【考点】函数自变量的取值范围
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x﹣1≠0,
解得x>1.
故选:D.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
◆变式训练
(2019年四川内江市)在函数y=+中,自变量x的取值范围是( )
A.x<4 B.x≥4且x≠﹣3 C.x>4 D.x≤4且x≠﹣3
【考点】函数自变量的取值范围
【分析】根据分式有意义的条件、二次根式有意义的条件列出不等式,计算即可.
解:由题意得,x+3≠0,4﹣x≥0,
解得,x≤4且x≠﹣3,
故选:D.
【点评】本题考查的是函数自变量的取值范围,掌握分式有意义的条件、二次根式有意义的条件是解题的关键.
■考点6.函数图象的判断
◇典例
(2018山东滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
A. B. C. D.
【考点】函数的图象
【分析】根据定义可将函数进行化简.
解:当﹣1≤x<0,[x]=﹣1,y=x+1
当0≤x<1时,[x]=0,y=x
当1≤x<2时,[x]=1,y=x﹣1
……
故选:A.
【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.
◆变式训练
(2018年宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀
注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图
象大致是( )
A. B. C. D.
【考点】函数的图象
【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.
解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,
故选:D.
【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.
1.(2019年湖南省株洲市)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标
【分析】根据各象限内点的坐标特征解答即可.
解:点A坐标为(2,﹣3),则它位于第四象限,
故选:D.
【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(+,﹣).
2.(2019年山东省滨州市(a卷))在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(﹣1,1) B.(3,1) C.(4,﹣4) D.(4,0)
【考点】坐标与图形变化﹣平移
【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.
解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,
∴点B的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,
∴B的坐标为(﹣1,1).
故选:A.
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减.
3.(2019年广西柳州市)已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是( )
A.y=4x(x≥0) B.y=4x﹣3(x≥)
C.y=3﹣4x(x≥0) D.y=3﹣4x(0≤x≤)
【考点】函数关系式
【分析】根据路程=速度×时间,容易知道y与x的函数关系式.
解:根据题意得:
全程需要的时间为:3÷4=(小时),
∴y=3﹣4x(0≤x≤).
故选:D.
【点评】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.
4.(2019年湖南省湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( )
A.(0,5) B.(5,1) C.(2,4) D.(4,2)
【考点】坐标与图形变化﹣平移
【分析】在平面直角坐标系中,将点(2,1)向右平移时,横坐标增加,纵坐标不变.
解:将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1).
故选:B.
【点评】本题运用了点平移的坐标变化规律,关键是把握好规律.
5.(2019年四川省泸州市)函数y=的自变量x的取值范围是( )
A.x<2 B.x≤2 C.x>2 D.x≥2
【考点】二次根式有意义的条件,函数自变量的取值范围
【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式,根据二次根式的意义,被开方数是非负数.
解:根据题意得:2x﹣4≥0,
解得x≥2.
故选:D.
【点评】函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数,
(2)当函数表达式是分式时,考虑分式的分母不能为0,
(3)当函数表达式是二次根式时,被开方数为非负数.
6.(2018年内蒙古呼和浩特市)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气( )
A.惊蛰 B.小满 C.立秋 D.大寒
【考点】函数的图象
【分析】根据函数的图象确定每个节气白昼时长,然后即可确定正确的选项.
解:A、惊蛰白昼时长为11.5小时,高于11小时,不符合题意;
B、小满白昼时长为14.5小时,高于11小时,不符合题意;
C、秋分白昼时长为12.2小时,高于11小时,不符合题意;
D、大寒白昼时长为9.8小时,低于11小时,符合题意,
故选:D.
【点评】考查了函数的图象的知识,解题的关键是能够读懂函数的图象并从中整理出进一步解题的有关信息,难度不大.
7.(2018年黑龙江省齐齐哈尔市)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )
A.0点时气温达到最低
B.最低气温是零下4℃
C.0点到14点之间气温持续上升
D.最高气温是8℃
【考点】函数图象
【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
解:A、由函数图象知4时气温达到最低,此选项错误;
B、最低气温是零下3℃,此选项错误;
C、4点到14点之间气温持续上升,此选项错误;
D、最高气温是8℃,此选项正确;
故选:D.
【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.
8.(2019年浙江省杭州市)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
【考点】关于x轴、y轴对称的点的坐标
【分析】直接利用关于y轴对称点的性质得出答案.
解:∵点A(m,2)与点B(3,n)关于y轴对称,
∴m=﹣3,n=2.
故选:B.
【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
9.(2019年湖北省孝感市)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L,在随后的8min内既进水又出水,容器内存水12L,接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
A. B. C. D.
【考点】函数的图象
【分析】根据实际问题结合四个选项确定正确的答案即可.
解:∵从某时刻开始4min内只进水不出水,容器内存水8L,
∴此时容器内的水量随时间的增加而增加,
∵随后的8min内既进水又出水,容器内存水12L,
∴此时水量继续增加,只是增速放缓,
∵接着关闭进水管直到容器内的水放完,
∴水量逐渐减少为0,
综上,A选项符合,
故选:A.
【点评】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.
10.(2019年山东省潍坊市)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
【考点】动点问题的函数图象
【分析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.
解:由题意当0≤x≤3时,y=3,
当3<x<5时,y=×3×(5﹣x)=﹣x+.
故选:D.
【点评】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题,属于中考常考题型.
选择题
1.(2019年山东省枣庄市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)
【考点】坐标与图形变化﹣平移
【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.
解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,
∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,
∴A′的坐标为(﹣1,1).
故选:A.
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减.
2.(2019年四川省成都市)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为( )
A.(2,3) B.(﹣6,3) C.(﹣2,7) D.(﹣2.﹣1)
【考点】坐标与图形变化﹣平移
【分析】把点(﹣2,3)的横坐标加4,纵坐标不变得到点(﹣2,3)平移后的对应点的坐标.
解:点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(2,3).
故选:A.
【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度,如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
3.(2019年湖南省岳阳市)函数y=中,自变量x的取值范围是( )
A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0
【考点】函数自变量的取值范围
【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
解:根据题意得:,
解得:x≥﹣2且x≠0.
故选:D.
【点评】函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数,
(2)当函数表达式是分式时,考虑分式的分母不能为0,
(3)当函数表达式是二次根式时,被开方数非负.
4.(2019年山东省东营市)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )
A.乙队率先到达终点
B.甲队比乙队多走了126米
C.在47.8秒时,两队所走路程相等
D.从出发到13.7秒的时间段内,乙队的速度慢
【考点】函数的图象
【分析】根据函数图象所给的信息,逐一判断.
解:A、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误,
B、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误,
C、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确,
D、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误,
故选:C.
【点评】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
5.(2019年湖北省随州市)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )
A. B.
C. D.
【考点】函数的图象
【分析】根据乌龟比兔子早出发,而早到终点逐一判断即可得.
解:由于乌龟比兔子早出发,而早到终点,
故B选项正确,
故选:B.
【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.
6.(2019年黑龙江省齐齐哈尔、黑河市)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战
士们离营地的距离与时间之间函数关系的是( )
A. B. C. D.
【考点】函数的图象
【分析】根据题意,可以写出各段过程中,与的关系,从而可以解答本题.
解:由题意可得,战士们从营地出发到文具店这段过程中,随的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,随着的增加不变,战士们从文具店去福利院的过程中,随着的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,随着的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.
【点睛】本题主要考查图象的识别能力,关键在于根据图象来分析问题,是中考的必考点.
7.(2019年四川省自贡市)均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的( )
A. B. C. D.
【考点】函数图象
【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
解:根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
故选D.
【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
8.(2019年山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是( )
A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)
【考点】规律型:点的坐标
【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2019的坐标.
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,
2019÷4=504…3,
所以A2019的坐标为(504×2+1,0),
则A2019的坐标是(1009,0).
故选:C.
【点评】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.
9.(2018年重庆市(B卷))根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B.7 C.﹣9 D.﹣7
【考点】函数值
【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
解:∵当x=7时,y=6﹣7=﹣1,
∴当x=4时,y=2×4+b=﹣1,
解得:b=﹣9,
故选:C.
【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.
10.(2019年四川省广元市)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B.C.D.
【考点】动点问题的函数图象,菱形的性质
【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
解:分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y=AP?h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C和D不正确,
②当P在边BC上时,如图2,
y=AD?h,
AD和h都不变,
∴在这个过程中,y不变,
故选项B不正确,
③当P在边CD上时,如图3,
y=PD?h,
∵PD随x的增大而减小,h不变,
∴y随x的增大而减小,
∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,
∴P在三条线段上运动的时间相同,
故选项A正确,
故选:A.
【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.
11.(2019年广西玉林市)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=﹣,则y=2⊕x(x≠0)的图象是( )
A. B. C. D.
【考点】函数的图象
【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.
解:∵p⊕q=,
∴y=2⊕x=,
故选:D.
【点评】本题考查函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答.
12.(2019年广西百色市)阅读理解:
已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.
如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦PA的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.
设B(m,n),则m,n满足的等式是( )
A.m2+n2=9 B.()2+()2=9 C.(2m+3)2+(2n)2=3 D.(2m+3)2+4n2=9
【考点】坐标与图形性质
【分析】根据中点坐标公式求得点B的坐标,然后代入a,b满足的等式.
解:∵点A(﹣3,0),点P(a,b),点B(m,n)为弦PA的中点,
∴m=,n=.
∴a=2m+3,b=2n.
又a,b满足等式:a2+b2=9,
∴(2m+3)2+4n2=9.
故选:D.
【点评】考查了坐标与图形性质,解题的关键是理解中点坐标公式,难度不大.
13.(2019年湖南省衡阳市)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为( )
A. B. C.D.
【考点】动点问题的函数图象,正方形的性质、勾股定理
【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2,当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论,
解:∵在直角三角形ABC中,∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
∵EF⊥BC,ED⊥AC,
∴四边形EFCD是矩形,
∵E是AB的中点,
∴EF=AC,DE=BC,
∴EF=ED,
∴四边形EFCD是正方形,
设正方形的边长为a,
如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2,
当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,
∴S关于t的函数图象大致为C选项,
故选:C.
【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.
14.(2019年山东省菏泽市)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是( )
A. B. C.D.
【考点】动点问题的函数图象
【分析】根据题意结合图形,分情况讨论:
①0≤x≤2时,根据S△APQ=AQ?AP,列出函数关系式,从而得到函数图象,
②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.
解:①当0≤x≤2时,
∵正方形的边长为2cm,
∴y=S△APQ=AQ?AP=x2,
②当2≤x≤4时,
y=S△APQ
=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,
=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)
=﹣x2+2x
所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.
故选:A.
【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.
15.(2019年浙江省衢州市)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是( )
A. B. C. D.
【考点】动点问题的函数图象.
【分析】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.
解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;
当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,
当x=2时有最大面积为4,
当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,
当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;
故选:C.
【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.
16.(2019年湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为( )
A.﹣2 B.﹣1 C.0 D.1
【考点】点的坐标,坐标与图形性质
【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是﹣1.
解:点运动一个用时为÷π=2秒.
如图,作CD⊥AB于D,与交于点E.
在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,
∴∠CAD=30°,
∴CD=AC=×2=1,
∴DE=CE﹣CD=2﹣1=1,
∴第1秒时点P运动到点E,纵坐标为1,
第2秒时点P运动到点B,纵坐标为0,
第3秒时点P运动到点F,纵坐标为﹣1,
第4秒时点P运动到点G,纵坐标为0,
第5秒时点P运动到点H,纵坐标为1,
…,
∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,
∵2019÷4=504…3,
∴第2019秒时点P的纵坐标为是﹣1.
故选:B.
【点评】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环.也考查了垂径定理.
填空题
17.(2019年黑龙江省哈尔滨市)在函数中,自变量的取值范围是__________.
【考点】函数自变量的取值范围
【分析】根据分式的分母不为零即可确定自变量的取值范围.
解:函数中分母,
∴;
故答案为;
【点睛】本题主要考查了函数及分式的概念,明确分式的分母不为零这一条件是解题的关键.
18.(2019年山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 .
【考点】坐标与图形变化﹣对称
【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.
解:∵点P(4,2),
∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,
∴点P′的横坐标为1﹣3=﹣2,
∴对称点P′的坐标为(﹣2,2).
故答案为:(﹣2,2).
【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.
19.(2019年四川省泸州市)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b的值是 .
【考点】关于x轴、y轴对称的点的坐标
【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.
解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,
∴a=3,b=1,
则a+b的值是:4.
故答案为:4.
【点评】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
20.(2019年湖南省湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m= .
【考点】点的坐标
【分析】根据材料可以得到等式4m=3×8,即可求m,
解:∵=(4,3),=(8,m),且∥,
∴4m=3×8,
∴m=6,
故答案为6,
【点评】本题考查新定义,点的坐标,理解阅读材料的内容,转化为所学知识求解是关键.
21.(2019年四川省乐山市)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是 .
【考点】动点问题的函数图象,等边三角形
【分析】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.
解:∵∠B=30°,直线l⊥AB,
∴BE=2EF,
由图可得,
AB=4cos30°=4×=2,
BC=5,
AD=7﹣4=3,
当EF平移到点F与点D重合时,如右图所示,
∵∠EFB=60°,
∴∠DEC=60°,
∵DE=CE=2,
∴△DEC为等边三角形,
∴CD=2.
∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,
故答案为:10+2.
【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
22.(2019年四川省成都市)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为 .
【考点】坐标与图形性质,三角形的面积
【分析】根据面积求出B点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况,
解:设B(m,n),
∵点A的坐标为(5,0),
∴OA=5,
∵△OAB的面积=5?n=,
∴n=3,
结合图象可以找到其中的一种情况:(以一种为例)
当2<m<3时,有6个整数点,
当3<m<时,有5个整数点,
当m=3时,有4个整数点,
可知有6个或5个或4个整数点,
故答案为4或5或6,
【点评】本题考查三角形的面积与平面直角坐标系中点的关系,能够结合图象,多作图是解题的关键.
解答题
23.(2019年甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市、陇南市、庆阳市)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点__________.
【考点】点的坐标
【分析】直接利用“帅”位于点,可得原点的位置,进而得出“兵”的坐标.
解:如图所示:可得原点位置,则“兵”位于.
故答案为:.
【点睛】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.
24.(2019年广西桂林市)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1,
(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3),
(3)在(2)的条件下,直接写出点A1的坐标.
【考点】作图﹣平移变换
【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1,
(2)利用A点坐标画出直角坐标系,
(3)利用第二象限点的坐标特征写出点A1的坐标.
解:(1)如图,△A1B1C1为所作,
(2)如图,
(3)点A1的坐标为(2,6).
【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
25.(2019年黑龙江省齐齐哈尔、黑河市)甲、乙两地间的直线公路长为千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发小时,途中轿车出现了故障,停下维修,货车仍继续行驶.小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离(千米)与轿车所用的时间(小时)的关系如图所示,请结合图象解答下列问题:
(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;值为_______.
(2)求轿车距其出发地的距离(千米)与所用时间(小时)之间的函数关系式并写出自变量的取值范围;
(3)请直接写出货车出发多长时间两车相距千米.
【考点】函数的图像
【分析】(1)观察图象即可解决问题;
(2)分别求出得、、的坐标,运用待定系数法解得即可;
(3)根据题意列方程解答即可.
解:(1)车的速度是千米/小时;轿车的速度是:千米/小时;.
故答案为:;;;
(2)由题意可知:,,,
设直线的解析式为,
,
当时,,
设直线的解析式为,
把,代入得:
,解得,
,
;
(3)设货车出发小时后两车相距千米,根据题意得:
或,
解得或.
答:货车出发小时或小时后两车相距千米.
【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.