1.4生活中的优化问题举例
学情分析:前几节课学生已经对函数求导,以及利用导数研究函数单调性有了一定了解,本节课在前几节课的基础上结合生活实例 研究优化问题,对于学生应该比较容易理解并且掌握.
教学目标:
通过利润最大、用料最省、效率最高等优化问题,使学生体会导数在解决实际问题中的作用
提高将实际问题转化为数学问题的能力
教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
教学方法:利用课件讲练结合.
教学过程:
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;
2、与利润及其成本有关的最值问题;
3、费用最省问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路:
三.典例分析
探究点一 面积、体积的最值问题
例1.海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?
解 设版心的高为x dm,则版心的宽为 dm,此时四周空白面积为
S(x)=(x+4)-128
=2x++8,x>0.
求导数,得S′(x)=2-.
令S′(x)=2-=0,解得x=16(x=-16舍去).
于是宽为==8.
当x∈(0,16)时,S′(x)<0;当x∈(16,+∞)时,S′(x)>0.
因此,x=16是函数S(x)的极小值点,也是最小值点.
所以,当版心高为16 dm,宽为8 dm时,能使四周空白面积最小.
反思 (1)在求最值时,往往建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.
(2)在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域.
跟踪训练1 如图,四边形ABCD是一块边长为4 km的正方形地域,地域内有一条 河流MD,其经过的路线是以AB的中点M为顶点且开口向右的抛物线(河流宽度忽略不计).新长城公司准备投资建一个大型矩形游乐园PQCN,问如何施工才能使游乐园的面积最大?并求出最大面积.
探究点二 利润最大问题
导引 (1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?你想从数学上知道它的道理吗?
(2)是不是饮料瓶越大,饮料公司的利润越大?
例2.某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
(1)瓶子半径多大时,能使每瓶饮料的利润最大?
(2)瓶子半径多大时,每瓶饮料的利润最小?
解 由于瓶子的半径为r,所以每瓶饮料的利润是
y=f(r)=0.2×πr3-0.8πr2
=0.8π,0令f′(r)=0.8π(r2-2r)=0.
当r=2时,f′(r)=0.
当r∈(0,2)时,f′(r)<0;
当r∈(2,6)时,f′(r)>0.
因此,当半径r>2时,
f′(r)>0,它表示f(r)单调递增,即半径越大,利润越高半径r<2时,f′(r)<0,它表示f(r)单调递减,
即半径越大,利润越低.
这时f(2)<0,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
半径为6 cm时,利润最大.
反思 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有
(1)利润=收入-成本;
(2)利润=每件产品的利润×销售件数.
跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
探究点三 费用(用材)最省问题
例3 已知A、B两地相距200 km,一只船从A地逆水行驶到B地,水速为8 km/h,船在静水中的速度为v km/h(8解 设每小时的燃料费为y1,比例系数为k(k>0),
则y1=kv2,当v=12时,y1=720,
∴720=k·122,得k=5.
设全程燃料费为y,由题意,得
y=y1·=,
∴y′==.
令y′=0,得v=16,
当v0<16,即v∈(8,v0]时,y′<0,
即y在(8,v0]上为减函数,
∴当v=v0时,ymin=(元)
综上,当v0≥16时,v=16 km/h全程燃料费最省,为32 000元;
当v0<16,即v=v0时全程燃料费最省,为元
反思 本题在解题过程中容易忽视定义域,误以为v=16时取得最小值.本题的关键是弄清极值点是否在定义域范围内.
跟踪训练3 现有一批货物由海上从A地运往B地,已知轮船的最大航行速度为35海里/时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方、成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为速度x(海里/时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度行驶?
四.课堂练习
1.方底无盖水箱的容积为256,则最省材料时,它的高为 ( )
A.4 B.6 C.4.5 D.8
2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.048 6),若使银行获得最大收益,则x的取值为 ( )
A.0.016 2 B.0.032 4
C.0.024 3 D.0.048 6
3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x3-x+8(0五.课堂总结
1.利用导数解决优化问题的基本思路:
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。
六.课后作业:习题 《1.4生活中的优化问题举例 》
七. 课后反思 : 通过本节课的学习,学生能够利用导数解决生活中的优化问题,提高了将实际问题转化为数学问题的能力,同时对导数有了更深的认识,完成了教学目标。