(新课标)人教A版数学必修4(课件+教案+练习)第2章 2.1 平面向量的实际背景及基本概念:47张PPT

文档属性

名称 (新课标)人教A版数学必修4(课件+教案+练习)第2章 2.1 平面向量的实际背景及基本概念:47张PPT
格式 zip
文件大小 2.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-10-15 14:13:51

文档简介

课件47张PPT。第二章 平面向量2.1 平面向量的实际背景及基本概念
2.1.1 向量的物理背景与概念
2.1.2 向量的几何表示
2.1.3 相等向量与共线向量大小方向大小方向带有方向起点方向长度有向线段长度1相同或相反a∥b平行相等相同a=b向量的有关概念 向量的表示及应用 相等向量和共线向量 点击右图进入…Thank you for watching !
2.1 平面向量的实际背景及基本概念
2.1.1 向量的物理背景与概念
2.1.2 向量的几何表示
2.1.3 相等向量与共线向量
学 习 目 标
核 心 素 养
1.理解向量的有关概念及向量的几何表示.(重点)
2.理解共线向量、相等向量的概念.(难点)
3.正确区分向量平行与直线平行.(易混点)
1.从物理背景、几何背景入手,从矢量概念引入向量的概念,提升数学抽象的核心素养.
2.借助类比实数在数轴上的表示,给出向量的几何意义,培养学生数学抽象和直观想象的核心素养;
3.通过相等向量和平行向量的学习,提升了学生逻辑推理的核心素养.
1.向量与数量
(1)向量:既有大小,又有方向的量叫做向量.
(2)数量:只有大小,没有方向的量称为数量.
2.向量的几何表示
(1)带有方向的线段叫做有向线段.它包含三个要素:起点、方向、长度.
(2)向量可以用有向线段表示.向量的大小,也就是向量 的长度(或称模),记作||.向量也可以用字母a,b,c,…表示,或用表示向量的有向线段的起点和终点字母表示,例如:,.
思考:(1)向量可以比较大小吗?
(2)有向线段就是向量吗?
[提示] (1)向量不能比较大小,但向量的模可以比较大小.
(2)有向线段只是表示向量的一个图形工具,它不是向量.
3.向量的有关概念
零向量
长度为0的向量,记作0
单位向量
长度等于1个单位的向量
平行向量
(共线向量)
方向相同或相反的非零向量向量a,b平行,记作a∥b规定:零向量与任一向量平行
相等向量
长度相等且方向相同的向量向量a与b相等,记作a=b
1.正n边形有n条边,它们对应的向量依次为a1,a2,a3,…,an,则这n个向量(  )
A.都相等   B.都共线
C.都不共线 D.模都相等
D [因为多边形为正多边形,所以边长相等,所以各边对应向量的模都相等.]
2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的有(  )
A.1个 B.2个
C.3个 D.4个
B [①②③不是向量,④⑤是向量.]
3.已知||=1,||=2,若∠ABC=90°,则||= .
 [三角形ABC是以B为直角的直角三角形,所以||==.]
4.如图,四边形ABCD是平行四边形,则图中相等的向量是 (填序号).
(1)与;(2)与;
(3)与;(4)与.
(1)(4) [由平行四边形的性质和相等向量的定义可知:
=,≠,
≠,=.]
向量的有关概念
【例1】 判断下列命题是否正确,请说明理由:
(1)若向量a与b同向,且|a|>|b|,则a>b;
(2)若向量|a|=|b|,则a与b的长度相等且方向相同或相反;
(3)对于任意向量|a|=|b|,若a与b的方向相同,则a=b;
(4)由于0方向不确定,故0不与任意向量平行;
(5)向量a与向量b平行,则向量a与b方向相同或相反.
思路点拨:解答本题应根据向量的有关概念,注意向量的大小、方向两个要素.
[解] (1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.
(2)不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们的方向关系.
(3)正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.
(4)不正确.依据规定:0与任意向量平行.
(5)不正确.因为向量a与向量b若有一个是零向量,则其方向不定.
1.理解零向量和单位向量应注意的问题
(1)零向量的方向是任意的,所有的零向量都相等.
(2)单位向量不一定相等,易忽略向量的方向.
2.共线向量与平行向量
(1)平行向量也称为共线向量,两个概念没有区别;
(2)共线向量所在直线可以平行,与平面几何中的共线不同;
(3)平行向量可以共线,与平面几何中的直线平行不同.
提醒:解决与向量概念有关题目的关键是突出向量的核心——方向和长度.
1.给出下列命题:
①若a∥b,b∥c,则a∥c.
②若单位向量的起点相同,则终点相同.
③起点不同,但方向相同且模相等的几个向量是相等向量;
④向量与是共线向量,则A,B,C,D四点必在同一直线上.
其中正确命题的序号是 .
③ [①错误.若b=0,则①不成立;
②错误.起点相同的单位向量,终点未必相同;
③正确.对于一个向量只要不改变其大小和方向,是可以任意移动的.
④错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量,必须在同一直线上.]
向量的表示及应用
【例2】 (1)如图,B,C是线段AD的三等分点,分别以图中各点为起点和终点,可以写出 个向量.
(2)在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:
①,使||=4,点A在点O北偏东45°;
②,使||=4,点B在点A正东;
③,使||=6,点C在点B北偏东30°.
(1)12 [可以写出12个向量,分别是:,,,,,,,,,,,.]
(2)[解] ①由于点A在点O北偏东45°处,所以在坐标纸上点A距点O的横向小方格数与纵向小方格数相等.又||=4,小方格边长为1,所以点A距点O的横向小方格数与纵向小方格数都为4,于是点A位置可以确定,画出向量如图所示.
②由于点B在点A正东方向处,且||=4,所以在坐标纸上点B距点A的横向小方格数为4,纵向小方格数为0,于是点B位置可以确定,画出向量如图所示.
③由于点C在点B北偏东30°处,且||=6,依据勾股定理可得:在坐标纸上点C距点B的横向小方格数为3,纵向小方格数为3≈5.2,于是点C位置可以确定,画出向量如图所示.
1.向量的两种表示方法
(1)几何表示法:先确定向量的起点,再确定向量的方向,最后根据向量的长度确定向量的终点.
(2)字母表示法:为了便于运算可用字母a,b,c表示,为了联系平面几何中的图形性质,可用表示向量的有向线段的起点与终点表示向量,如,,等.
2.两种向量表示方法的作用
(1)用几何表示法表示向量,便于用几何方法研究向量运算,为用向量处理几何问题打下了基础.
(2)用字母表示法表示向量,便于向量的运算.
2.某人从A点出发向东走了5米到达B点,然后改变方向按东北方向走了10米到达C点,到达C点后又改变方向向西走了10米到达D点.
(1)作出向量,,;
(2)求的模.
[解] (1)作出向量,,,如图所示:
(2)由题意得,△BCD是直角三角形,其中∠BDC=90°,BC=10米,CD=10米,所以BD=10米.△ABD是直角三角形,其中∠ABD=90°,AB=5米,BD=10米,所以AD==5(米),所以||=5米.
相等向量和共线向量
[探究问题]
1.两个相等的非零向量的起点与终点是否都分别重合?
提示:不一定.因为向量都是自由向量,只要大小相等,方向相同就是相等向量,与起点和终点位置无关.
2.若∥,则从直线AB与直线CD的关系和与的方向关系两个方面考虑有哪些情况?
提示:分四种情况
(1)直线AB和直线CD重合,与同向;
(2)直线AB和直线CD重合,与反向;
(3)直线AB∥直线CD,与同向;
(4)直线AB∥直线CD,与反向.
【例3】 如图所示,O是正六边形ABCDEF的中心,且=a,=b,=c.
(1)与a的长度相等、方向相反的向量有哪些?
(2)与a共线的向量有哪些?
(3)请一一列出与a,b,c相等的向量.
思路点拨:根据相等向量与共线向量的概念寻找所求向量.
[解] (1)与a的长度相等、方向相反的向量有,,,.
(2)与a共线的向量有,,,,,,,,.
(3)与a相等的向量有,,;与b相等的向量有,,;与c相等的向量有,,.
1.本例条件不变,写出与向量相等的向量.
[解] 相等向量是指长度相等、方向相同的向量,所以图中与相等的向量有,,.
2.本例条件不变,写出与向量长度相等的共线向量.
[解] 与长度相等的共线向量有:,,,,,,.
3.在本例中,若|a|=1,则正六边形的边长如何?
[解] 由正六边形中,每边与中心连接成的三角形均为正三角形,∴△FOA为等边三角形,所以边长AF=|a|=1.
相等向量与共线向量的探求方法
(1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.
(2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.
提醒:与向量平行相关的问题中,不要忽视零向量.
1.向量是近代数学重要的和基本的数学概念之一,有深刻的几何和物理背景,它是沟通代数、几何、三角函数的一种工具,注意向量与数量的区别与联系.
2.从定义上看,向量有大小和方向两个要素,而有向线段有起点、方向和长度三个要素,因此它们是两个不同的量.在空间中,有向线段是固定的,而向量是可以自由移动的.向量可以用有向线段表示,但并不能说向量就是有向线段.
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.
1.在下列判断中,正确的是(  )
①长度为0的向量都是零向量;
②零向量的方向都是相同的;
③单位向量的长度都相等;
④单位向量都是同方向;
⑤任意向量与零向量都共线.
A.①②③    B.②③④
C.①②⑤ D.①③⑤
D [由定义知①正确,②由于零向量的方向是任意的,故两个零向量的方向是否相同不确定,故不正确.显然③⑤正确,④不正确,故选D.]
2.汽车以120 km/h的速度向西走了2 h,摩托车以45 km/h的速度向东北方向走了2 h,则下列命题中正确的是(  )
A.汽车的速度大于摩托车的速度
B.汽车的位移大于摩托车的位移
C.汽车走的路程大于摩托车走的路程
D.以上都不对
C [速度、位移是向量,既有大小,又有方向,不能比较大小,路程可以比较大小.]
3.在下列命题中:①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个非零向量的两个向量是共线向量.正确的命题是 .
④⑥ [由向量的相关概念可知④⑥正确.]
4.如图所示菱形ABCD中,对角线AC,BD相交于O点,∠DAB=60°,分别以A,B,C,D,O中的不同两点为始点与终点的向量中,
(1)写出与平行的向量;
(2)写出与模相等的向量.
[解] 由题图可知,(1)与平行的向量有:,,;(2)与模相等的向量有:
,,,,,,,,.
课时分层作业(十四)
(建议用时:45分钟)
[基础达标练]
一、选择题
1.下列说法不正确的是(  )
A.向量的模是一个非负实数
B.任何一个非零向量都可以平行移动
C.长度不相等而方向相反的两个向量一定是共线向量
D.两个有共同起点且共线的向量终点也必相同
D [根据向量的有关概念易判断,D项错误.]
2.下面几个命题:
(1)若a=b,则|a|=|b|.
(2)若|a|=0,则a=0.
(3)若|a|=|b|,则a=b.
(4)若向量a,b满足则a=b.
其中正确命题的个数是(  )
A.0 B.1    C.2    D.3
B [(1)正确.(2)错误.|a|=0,则a=0.(3)错误.a与b的方向不一定相同.(4)错误.a与b的方向有可能相反.]
3.在同一平面内,把所有长度为1的向量的始点固定在同一点,这些向量的终点形成的轨迹是(  )
A.单位圆 B.一段弧
C.线段 D.直线
A [平面内到定点距离等于定长的点的轨迹是圆.]
4.如图是3×4的格点图(每个小方格都是单位正方形),若起点和终点都在方格的顶点处,则与平行且模为的向量共有(  )
A.12个 B.18个
C.24个 D.36个
C [每个正方形的边长为1,则对角线长为,每个小正方形中存在两个与平行且模为的向量,一共有12个正方形,故共24个所求向量.]
5.如图所示,在正三角形ABC中,P,Q,R分别是AB,BC,AC的中点,则与向量相等的向量是(  )
A.与 B.与
C.与 D.与
B [向量相等要求模相等,方向相同,因此与都是和相等的向量.]
二、填空题
6.如图,四边形ABCD和BCED都是平行四边形,则与相等的向量有 .
; [由平行四边形的性质和相等向量的定义得=,=.]
7.若a为任一非零向量,b为模为1的向量,下列各式:
①|a|>|b|;②a∥b;③|a|>0;④|b|=±1,其中正确的是 (填序号).
③ [①错误.|a|=时,|a|<|b|;②错误.a与b的方向关系无法确定;③正确;④错误.|b|=1.]
8.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是 (填序号).
①③④ [相等向量一定是共线向量;两个向量的模相等,方向不一定相同或相反,故应填①③④.]
三、解答题
9.O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在如图所示的向量中:
(1)分别找出与,相等的向量;
(2)找出与共线的向量;
(3)找出与模相等的向量;
(4)向量与是否相等?
[解] (1)=,=.
(2)与共线的向量有:,,.
(3)与模相等的向量有:,,,,,,.
(4)向量与不相等,因为它们的方向不相同.
10.已知飞机从A地按北偏东30°方向飞行2 000 km到达B地,再从B地按南偏东30°方向飞行2 000 km到达C地,再从C地按西南方向飞行1 000 km到达D地.画图表示向量,,,并指出向量的模和方向.
[解] 以A为原点,正东方向为x轴正方向,正北方向为y轴正方向建立直角坐标系.
据题设,B点在第一象限,C点在x轴正半轴上,D点在第四象限,向量,,如图所示,
由已知可得,
△ABC为正三角形,所以AC=2 000 km.
又∠ACD=45°,CD=1 000 km,
所以△ADC为等腰直角三角形,
所以AD=1 000 km,∠CAD=45°.
故向量的模为1 000 km,方向为东南方向.
[能力提升练]
1.四边形ABCD,CEFG,CGHD都是全等的菱形,HE与CG相交于点M,则下列关系不一定成立的是(  )
A.||=||
B.与共线
C.与共线
D.与共线
C [∵三个四边形都是菱形,∴||=||,AB∥CD∥FH,故与共线.又三点D,C,E共线,∴与共线,故A,B,D都正确.故选C.]
2.如图所示,已知四边形ABCD是矩形,O为对角线AC与BD的交点,设点集M={O,A,B,C,D},向量的集合T={|P,Q∈M,且P,Q不重合},则集合T有 个元素.
12 [根据题意知,由点O,A,B,C,D可以构成20个向量.但它们有12个向量各不相等,由元素的互异性知T中有12个元素.]