课件43张PPT。第四讲 用数学归纳法证明不等式一 数学归纳法n=k+1 用数学归纳法证明等式 用数学归纳法证明整除问题 证明几何命题 数学归纳法的概念 点击右图进入…Thank you for watching !
一 数学归纳法
学习目标:1.了解数学归纳法的原理及其使用范围.(重点)2.会利用数学归纳法证明一些简单问题.(重点、难点)
教材整理 数学归纳法的概念
阅读教材P46~P50,完成下列问题.
一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:
(1)证明当n=n0时命题成立;
(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明_n=k+1时命题也成立.
在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.
数学归纳法证明中,在验证了n=1时命题正确,假定n=k时命题正确,此时k的取值范围是( )
A.k∈N B.k>1,k∈N+
C.k≥1,k∈N+ D.k>2,k∈N+
C [数学归纳法是证明关于正整数n的命题的一种方法,所以k是正整数,又第一步是递推的基础,所以k大于等于1.]
用数学归纳法证明等式
【例1】 用数学归纳法证明:
1-+-+…+-=++…+.
[精彩点拨] 要证等式的左边共2n项,右边共n项,f(k)与f(k+1)相比左边增二项,右边增一项,而且左、右两边的首项不同.因此,由“n=k”到“n=k+1”时要注意项的合并.
[自主解答] ①当n=1时,左边=1-===右边,所以等式成立.
②假设n=k(k≥1,k∈N+)时等式成立,即
1-+-+…+-=++…+,则当n=k+1时,
左边=1-+-+…+-+-=+-
=+
=+…+++=右边,
所以,n=k+1时等式成立.
由①②知,等式对任意n∈N+成立.
1.用数学归纳法证明等式的关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关.由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
2.利用数学归纳法证明代数恒等式时要注意两点:一是要准确表述n=n0时命题的形式,二是要准确把握由n=k到n=k+1时,命题结构的变化特点.并且一定要记住:在证明n=k+1成立时,必须使用归纳假设,这是数学归纳法证明的核心环节.
1.用数学归纳法证明:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1).
[证明] (1)当n=1时,左边=12-22=-3,
右边=-1×(2×1+1)=-3,等式成立.
(2)假设当n=k(k≥1)时,等式成立,就是
12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1).
当n=k+1时,
12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2
=-k(2k+1)+(2k+1)2-[2(k+1)]2=-k(2k+1)-(4k+3)=-(2k2+5k+3)
=-(k+1)[2(k+1)+1],
所以n=k+1时等式也成立,
根据(1)和(2)可知,等式对任何n∈N+都成立.
用数学归纳法证明整除问题
【例2】 用数学归纳法证明:(3n+1)·7n-1能被9整除(n∈N+).
[精彩点拨] 先验证n=1时命题成立,然后再利用归纳假设证明,关键是找清f(k+1)与f(k)的关系并设法配凑.
[自主解答] (1)当n=1时,原式=(3×1+1)×7-1=27,能被9整除,命题成立.
(2)假设当n=k(k∈N+,k≥1)时,(3k+1)·7k-1能被9整除,则当n=k+1时,
[ 3(k+1)+1]·7k+1-1
=[21(k+1)+7]·7k-1
=[(3k+1)+(18k+27)]·7k-1
=[(3k+1)·7k-1]+9(2k+3)·7k.
∵[(3k+1)·7k-1]和9(2k+3)·7k都能被9整除,
∴[ (3k+1)·7k-1]+9(2k+3)·7k能被9整除,
即[3(k+1)+1]·7k+1-1能被9整除,
即当n=k+1时命题成立.
由(1)(2)可知,对任何n∈N+,命题都成立,即(3n+1)·7n-1能被9整除(n∈N+).
1.证明本题时关键是用归纳假设式子(3k+1)·7k-1表示n=k+1时的式子.
2.用数学归纳法证明整除问题关键是利用增项、减项、拆项、并项、因式分解等恒等变形的方法去凑假设、凑结论,从而利用归纳假设使问题获证.一般地,证明一个与n有关的式子f(n)能被一个数a(或一个代数式g(n)) 整除,主要是找到f(k+1)与f(k)的关系,设法找到式子f1(k),f2(k),使得f(k+1)=f(k)·f1(k)+f2(k).
2.求证:n3+(n+1)3+(n+2)3能被9整除.
[证明] (1)当n=1时,13+(1+1)3+(1+2)3=36,36能被9整除,命题成立.
(2)假设n=k(k≥1,k∈N+)时,命题成立,即k3+(k+1)3+(k+2)3能被9整除,
当n=k+1时,(k+1)3+(k+2)3+(k+3)3
=(k+1)3+(k+2)3+k3+3k2·3+3k·32+33
=[k3+(k+1)3+(k+2)3]+9(k2+3k+3),
由归纳假设知,上式中两项都能被9整除,故n=k+1时,命题也成立.
由(1)和(2)可知,对n∈N+命题成立.
证明几何命题
【例3】 平面内有n(n≥2,n∈N+)条直线,其中任意两条不平行,任意三条不过同一点,那么这n条直线的交点个数f(n)是多少?并证明你的结论.
[精彩点拨] (1)从特殊入手,求f(2),f(3),f(4),猜想出一般性结论f(n);(2)利用数学归纳法证明.
[自主解答] 当n=2时,f(2)=1 ;当n=3时,f(3)=3;
当n=4时,f(4)=6.
因此猜想f(n)=(n≥2,n∈N+).
下面利用数学归纳法证明:
(1)当n=2时,两条相交直线有一个交点,
又f(2)=×2×(2-1)=1.
∴n=2时,命题成立.
(2)假设当n=k(k≥2且k∈N+)时命题成立,就是该平面内满足题设的任何k条直线的交点个数为f(k)=k(k-1),
当n=k+1时,其中一条直线记为l,剩下的k条直线为l1,l2,…,lk.
由归纳假设知,剩下的k条直线之间的交点个数为f(k)=.
由于l与这k条直线均相交且任意三条不过同一点,
所以直线l与l1,l2,l3,…,lk的交点共有k个,
∴f(k+1)=f(k)+k=+k=
==,
∴当n=k+1时,命题成立.
由(1)(2)可知,命题对一切n∈N+且n≥2时成立.
1.从特殊入手,寻找一般性结论,并探索n变化时,交点个数间的关系.
2.利用数学归纳法证明几何问题时,关键是正确分析由n=k到n=k+1时几何图形的变化规律并结合图形直观分析,要讲清原因.
3.在本例中,探究这n条直线互相分割成线段或射线的条数是多少?并加以证明.
[解] 设分割成线段或射线的条数为f(n),则f(2)=4,f(3)=9,f(4)=16.
猜想n条直线分割成线段或射线的条数f(n)=n2(n≥2),下面利用数学归纳法证明.
(1)当n=2时,显然成立.
(2)假设当n=k(k≥2,且k∈N+)时,
结论成立,f(k)=k2.
则当n=k+1时,设有l1,l2,…,lk,lk+1,共k+1条直线满足题设条件.
不妨取出直线l1,余下的k条直线l2,l3,…,lk,lk+1互相分割成f(k)=k2条射线或线段.
直线l1与这k条直线恰有k个交点,则直线l1被这k个交点分成k+1条射线或线段.k条直线l2,l3,…,lk-1中的每一条都与l1恰有一个交点,因此每条直线又被这一个交点多分割出一条射线或线段,共有k条.
故f(k+1)=f(k)+k+1+k=k2+2k+1=(k+1)2,
∴当n=k+1时,结论正确.
由(1)(2)可知,上述结论对一切n≥2且n∈N+均成立.
数学归纳法的概念
[探究问题]
1.数学归纳法中,n取的第一个值n0是否一定是1?
[提示] n0不一定是1,指适合命题的第一个正整数,不是一定从1开始.
2.如何理解数学归纳法的两个步骤之间的关系?
[提示] 第一步是验证命题递推的基础,第二步是论证命题递推的桥梁,这两个步骤缺一不可,只完成步骤(1)而缺少步骤(2)就作出判断,可能得出不正确的结论,因为单靠步骤(1)无法递推下去,即n取n0以后的数时命题是否正确,我们无法判断.同样只有步骤(2)而缺少步骤(1)时,也可能得出不正确的结论,缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)也就无意义了.
【例4】 用数学归纳法证明:1+a+a2+…+an+1=(a≠1,n∈N+),在验证n=1成立时,左边计算的结果是( )
A.1 B.1+a
C.1+a+a2 D.1+a+a2+a3
[精彩点拨] 注意左端特征,共有n+2项,首项为1,最后一项为an+1.
C [实际是由1(即a0)起,每项指数增加1,到最后一项为an+1,所以n=1时,左边的最后一项应为a2,因此左边计算的结果应为1+a+a2.]
1.验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.
2.递推是关键:正确分析由n=k到n=k+1时式子项数的变化是应用数学归纳法成功证明问题的保障.
4.当f(k)=1-+-+…+-,则f(k+1)=f(k)+________.
[解析] f(k+1)=1-+-+…+-+-,∴f(k+1)=f(k)+-.
[答案] -
1.用数学归纳法证明:1+2+3+…+(2n+1)=(n+1)·
(2n+1)时,在验证n=1成立时,左边所得的代数式为( )
A.1 B.1+3
C.1+2+3 D.1+2+3+4
C [当n=1时左边所得的代数式为1+2+3.]
2.某个与正整数n有关的命题,如果当n=k(k∈N+且k≥1)时命题成立,则一定可推得当n=k+1时,该命题也成立.现已知n=5时,该命题不成立,那么应有( )
A.当n=4时,该命题成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=6时,该命题不成立
C [若n=4时命题成立,由递推关系知n=5时命题成立,与题中条件矛盾,所以n=4时,该命题不成立.]
3.用数学归纳法证明等式(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N+)时,从“n=k到n=k+1”左端需乘以的代数式为( )
A.2k+1 B.2(2k+1)
C. D.
B [当n=k时,等式为(k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1).
当n=k+1时,左边=[(k+1)+1][(k+1)+2]…[(k+1)+k][(k+1)+(k+1)]=(k+2)(k+3)…(k+k)·(2k+1)(2k+2).
比较n=k和n=k+1时等式的左边,可知左端需乘以=2(2k+1).故选B.]
4.用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”时,若n=1,则左端应为________.
[解析] 当n=1时,左端应为1×4=4.
[答案] 4
5.用数学归纳法证明:1+a+a2+…+an-1=(a≠1,n∈N+).
[证明] (1)当n=1时,左边=1,右边==1,等式成立.
(2)假设当n=k(k∈N+)时,等式成立,
即1+a+a2+…+ak-1=.
那么n=k+1时,
左边=1+a+a2+…+ak-1+ak=+ak
==
=右边,
所以等式也成立.
由(1)(2)可知,对任意n∈N+等式均成立.
课时分层作业(十二) 数学归纳法
(建议用时:45分钟)
[基础达标练]
一、选择题
1.设f(n)=1+++…+(n∈N+),则f(n+1)-f(n)等于( )
A. B.+
C.+ D.++
D [因为f(n)=1+++…+,所以f(n+1)=1+++…++++,所以f(n+1)-f(n)=++.故选D.]
2.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验第一个值n0等于( )
A.1 B.2
C.3 D.0
C [边数最少的凸n边形是三角形.]
3.已知a1=,an+1=,猜想an等于( )
A. B.
C. D.
D [a2==,
a3==,
a4===,
猜想an=.]
4.用数学归纳法证明:(n+1)(n+2)…·(n+n)=2n×1×3…(2n-1)时,从“k到k+1”左边需增乘的代数式是( )
A.2k+1 B.
C.2(2k+1) D.
C [当n=k+1时,左边=(k+1+1)(k+1+2)…·(k+1+k+1)=(k+1)·(k+2)·(k+3)…(k+k)·=(k+1)(k+2)(k+3)…(k+k)·2(2k+1).]
5.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)等于f(k)加上( )
A. B.π
C.2π D.π
B [从n=k到n=k+1时,内角和增加π.]
二、填空题
6.观察式子1=1,1-4=-(1+2),1-4+9=1+2+3,…,猜想第n个式子应为________.
[答案] 1-4+9-16+…+(-1)n-1n2
=(-1)n+1·
7.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到________.
[解析] ∵n=k时,命题为“1+2+22+…+2k-1=2k-1”,
∴n=k+1时为使用归纳假设,
应写成1+2+22+…+2k-1+2k=2k-1+2k=2k+1-1.
[答案] 1+2+22+…+2k-1+2k=2k+1-1
8.用数学归纳法证明34n+1+52n+1(n∈N+)能被14整除,当n=k+1时,对于34(k+1)+1+52(k+1)+1应变形为________.
[解析] 34(k+1)+1+52(k+1)+1=34k+5+52k+3=81×34k+1+25×52k+1=81×34k+1+81×52k+1-56×52k+1=81×(34k+1+52k+1)-56×52k+1.
[答案] 81×(34k+1+52k+1)-56×52k+1
三、解答题
9.用数学归纳法证明:
…=(n≥2,n∈N+).
[证明] (1)当n=2时,左边=1-=,右边==.
∴等式成立.
(2)假设当n=k(k≥2,k∈N+)时,等式成立,
即…=(k≥2,k∈N+).
当n=k+1时,
…
=·=
==,∴当n=k+1时,等式成立.
根据(1)和(2)知,对n≥2,n∈N+时,等式成立.
10.用数学归纳法证明:对于任意正整数n,整式an-bn都能被a-b整除.
[证明] (1)当n=1时,an-bn=a-b能被a-b整除.
(2)假设当n=k(k∈N+,k≥1)时,ak-bk能被a-b整除,那么当n=k+1时,ak+1-bk+1=ak+1-akb+akb-bk+1=ak(a-b)+b(ak-bk).因为(a-b)和ak-bk都能被a-b整除,所以上面的和ak(a-b)+b(ak-bk)也能被a-b整除.这也就是说当n=k+1时,ak+1-bk+1能被a-b整除.
根据(1)(2)可知对一切正整数n,an-bn都能被a-b整除.
[能力提升练]
1.设f(n)=+++…+(n∈N+),那么f(n+1)-f(n)等于( )
A. B.
C.+ D.-
D [因为f(n)=++…+,
所以f(n+1)=++…+++,
所以f(n+1)-f(n)=+-=-.]
2.某同学回答“用数学归纳法证明<n+1(n∈N+)的过程如下:
证明:(1)当n=1时,显然命题是正确的:
(2)假设n=k时有<k+1,那么当n=k+1时,=<=(k+1)+1,所以当n=k+1时命题是正确的.由(1)(2)可知对于n∈N+,命题都是正确的.以上证法是错误的,错误在于( )
A.从k到k+1的推理过程没有使用归纳假设
B.归纳假设的写法不正确
C.从k到k+1的推理不严密
D.当n=1时,验证过程不具体
A [证明<(k+1)+1时进行了一般意义的放大.而没有使用归纳假设<k+1.]
3.用数学归纳法证明22+32+…+n2=-1(n∈N+,且n>1)时,第一步应验证n=________,当n=k+1时,左边的式子为________.
[解析] ∵所证明的等式为
22+32+…+n2=-1(n∈N+,n>1).
又∵第一步验证的值应为第一个值(初始值),
∴n应为2.
又∵当n=k+1时,等式左边的式子实际上是将左边式子中所有的n换成k+1,
即22+32+…+k2+(k+1)2.
[答案] 2 22+32+…+k2+(k+1)2
4.是否存在常数a,b,c使等式(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c对一切正整数n成立?证明你的结论.
[解] 存在.分别用n=1,2,3代入,解方程组得
故原等式右边=-.
下面用数学归纳法证明.
(1)当n=1时,由上式可知等式成立.
(2)假设当n=k(k∈N+,k≥1)时等式成立,即(k2-12)+2(k2-22)+…+k(k2-k2)=k4-k2.
则当n=k+1时,
左边=[(k+1)2-12]+2[(k+1)2-22]+…+k[(k+1)2-k2]+(k+1)·[(k+1)2-(k+1)2]=(k2-12)+2(k2-22)+…+k(k2-k2)+(2k+1)+2(2k+1)+…+k(2k+1)=k4-k2+(2k+1)·=(k+1)4-(k+1)2,故n=k+1时,等式成立.
由(1)(2)得等式对一切n∈N+均成立.