(新课标)人教A版数学选修2-2(课件+教案+练习)第2章 2.2 2.2.2 反证法:38张PPT

文档属性

名称 (新课标)人教A版数学选修2-2(课件+教案+练习)第2章 2.2 2.2.2 反证法:38张PPT
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-10-15 15:16:20

文档简介

课件38张PPT。第二章 推理与证明2.2 直接证明与间接证明
2.2.2 反证法用反证法证明否定性命题 用反证法证明唯一性命题 用反证法证明“至多”“至少”问题点击右图进入…Thank you for watching !2.2.2 反证法
学 习 目 标
核 心 素 养
1.了解反证法是间接证明的一种基本方法.(重点、易混点)
2.理解反证法的思考过程,会用反证法证明数学问题.(重点、难点)
通过反证法的学习,培养学生的逻辑推理的核心素养.
反证法的定义及证题的关键
思考1:反证法的实质是什么?
[提示] 反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.
思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?
[提示] 反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.
1.“aA.a≠b    B.a>b
C.a=b D.a=b或a>b
[答案] D
2.用反证法证明“如果a>b,那么>”,假设的内容应是________.
[答案] ≤
3.用反证法证明“一个三角形不能有两个直角”有三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.
②所以一个三角形不能有两个直角.
③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.
上述步骤的正确顺序为________.
③①② [由反证法的一般步骤可知,正确的顺序应为③①②.]
4.应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有________.(填序号)
①结论的反设;②已知条件;③定义、公理、定理等;④原结论.
①②③  [反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.]
用反证法证明否定性命题
【例1】 已知三个正数a,b,c成等比数列,但不成等差数列.求证:,,不成等差数列.
[证明] 假设,,成等差数列,则+=2,即a+c+2=4b.
∵a,b,c成等比数列,∴b2=ac,即b=,
∴a+c+2=4,∴(-)2=0,即=.
从而a=b=c,与a,b,c不成等差数列矛盾,
故,,不成等差数列.
1.用反证法证明否定性命题的适用类型
结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.
2.用反证法证明数学命题的步骤
1.设SA,SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.
[证明] 假设AC⊥平面SOB,如图,
∵直线SO在平面SOB内,
∴SO⊥AC.
∵SO⊥底面圆O,∴SO⊥AB.
∴SO⊥平面SAB.
∴平面SAB∥底面圆O.
这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直.
用反证法证明唯一性命题
【例2】 求证方程2x=3有且只有一个根.
[证明] ∵2x=3,∴x=log23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:
假设方程2x=3至少有两个根b1,b2(b1≠b2),
则2b1=3,2b2=3,
两式相除得2b1-b2=1.
若b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.
若b1-b2<0,则2b1-b2<1,这也与2b1-b2=1相矛盾.
∴b1-b2=0,则b1=b2.
∴假设不成立,从而原命题得证.
巧用反证法证明唯一性命题
(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.
(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.
(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.
2.求证:两条相交直线有且只有一个交点.
[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.
若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.
若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.
综上所述,两条相交直线有且只有一个交点.
用反证法证明“至多”“至少”问题
[探究问题]
1.你能阐述一下“至少有一个、至多有一个、至少有n个”等量词的含义吗?
[提示] 
量词
含义
至少有一个
有n个,其中n≥1
至多有一个
有0或1个
至少有n个
大于等于n个
2.在反证法证明中,你能说出 “至少有一个、至多有一个、至少有n个”等量词的反设词吗?
[提示] 
量词
反设词
至少有一个
一个也没有
至多有一个
至少有两个
至少有n个
至多有n-1个
【例3】 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.
[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:
即
∴-<a<-1,
这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.
1.(变条件)将本题改为:已知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围?
[解] 若三个方程都没有实根,则
解得
即-<a<-1,故三个方程至少有一个方程有实根,实数a的取值范围是.
2.(变条件)将例题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围.
[解] 假设三个方程都有实数根,则
即
解得即a∈.
所以三个方程中至多有2个方程有实数根时,实数a的取值范围为R.
当命题中出现“至少……”“至多……”“不都……”“都不……”“没有……”“唯一”等指示性词语时,宜用反证法.
提醒:对于此类问题,需仔细体会“至少有一个”“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.
用反证法证题要把握三点:
(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.
(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.
(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.
1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是(  )
A.有两个内角是钝角
B.有三个内角是钝角
C.至少有两个内角是钝角
D.没有一个内角是钝角
C [“最多只有一个”的否定是“至少有两个”,故选C.]
2.如果两个实数之和为正数,则这两个数(  )
A.一个是正数,一个是负数
B.两个都是正数
C.至少有一个正数
D.两个都是负数
C [假设两个数分别为x1,x2,且x1≤0,x2≤0,则x1+x2≤0,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.]
3.已知平面α∩平面β=直线a,直线b?α,直线c?β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设________.
b与c平行或相交 [∵空间中两直线的位置关系有3种:异面、平行、相交,
∴应假设b与c平行或相交.]
4. 设数列{an}是公比为q的等比数列,Sn是它的前n项和.求证:数列{Sn}不是等比数列.
[证明] 假设数列{Sn}是等比数列,则S=S1S3,
即a(1+q)2=a1·a1(1+q+q2),
因为a1≠0,所以(1+q)2=1+q+q2,
即q=0,这与公比q≠0矛盾.
所以数列{Sn}不是等比数列.
课时分层作业(十五) 反证法
(建议用时:60分钟)
[基础达标练]
一、选择题
1.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中(  )
A.有一个内角小于60°
B.每一个内角都小于60°
C.有一个内角大于60°
D.每一个内角都大于60°
B [由反证法证明命题的格式和语言可知答案B是正确的,所以选B.]
2.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是(  )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
A [依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.]
3.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数a,b,c中恰有一个偶数”时正确的假设为(  )
A.自然数a,b,c都是奇数
B.自然数a,b,c都是偶数
C.自然数a,b,c中至少有两个偶数
D.自然数a,b,c中至少有两个偶数或都是奇数
D [反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数a,b,c中至少有两个偶数或都是奇数.]
4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为(  )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
C [假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故选C.]
5.设x,y,z都是正实数,a=x+,b=y+,c=z+,则a,b,c三个数 (  )
A.至少有一个不大于2
B.都小于2
C.至少有一个不小于2
D.都大于2
C [若a,b,c都小于2,则a+b+c<6①,
而a+b+c=x++y++z+≥6②,
显然①,②矛盾,所以C正确.]
二、填空题
6.用反证法证明“若函数f(x)=x2+px+q,则|f(1)|,|f(2)|,|f(3)|中至少有一个不小于”时,假设内容是________.
|f(1)|,|f(2)|,|f(3)|都小于 [“|f(1)|,|f(2)|,|f(3)|中至少有一个不小于”的反面是“|f(1)|,|f(2)|,|f(3)|都小于”.]
7.用反证法证明命题“若x2-1=0,则x=-1或x=1”时,应假设________.
x≠-1且x≠1 [反证法的反设只否定结论,或的否定是且,所以是x≠-1且x≠1.]
8.完成反证法证题的全过程.
题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则________均为奇数.
因奇数个奇数之和为奇数,故有奇数=________=________=0.
但奇数≠偶数,这一矛盾说明p为偶数.
a1-1,a2-2,…,a7-7 (a1-1)+(a2-2)+…+(a7-7)  (a1+a2+…+a7)-(1+2+…+7) [由假设p为奇数可知a1-1,a2-2,…,a7-7均为奇数,故(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0为奇数,这与0为偶数矛盾.]
三、解答题
9. 已知x,y>0,且x+y>2.
求证:,中至少有一个小于2.
[证明] 假设,都不小于2,
即≥2,≥2.
∵x,y>0,∴1+x≥2y,1+y≥2x.
∴2+x+y≥2(x+y),
即x+y≤2与已知x+y>2矛盾.
∴,中至少有一个小于2.
10.设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.
[解] 假设f(x)=0有整数根n,
则an2+bn+c=0,
由f(0)为奇数,即c为奇数,
f(1)为奇数,即a+b+c为奇数,所以a+b为偶数,
又an2+bn=-c为奇数,
所以n与an+b均为奇数,又a+b为偶数,
所以an-a为奇数,即(n-1)a为奇数,
所以n-1为奇数,这与n为奇数矛盾.
所以f(x)=0无整数根.
[能力提升练]
1.已知a,b,c∈(0,1),则在(1-a)b,(1-b)c,(1-c)a中, (  )
A.不能同时大于
B.都大于
C.至少一个大于
D.至多有一个大于
A [法一:假设(1-a)b,(1-b)c,(1-c)a都大于.
∵a,b,c都是小于1的正数,∴1-a,1-b,1-c都是正数.>>=,
同理>,>.
三式相加,得++>,
即>,矛盾.
所以(1-a)b,(1-b)c,(1-c)a不能都大于.
法二:假设三个式子同时大于,即(1-a)b>,
(1-b)c>,(1-c)a>,三式相乘得
(1-a)b(1-b)c(1-c)a>①
因为0同理,0所以(1-a)a(1-b)b(1-c)c≤.②
因为①与②矛盾,所以假设不成立,故选A.]
2.设椭圆+=1(a>b>0)的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )
A.必在圆x2+y2=2上 B.必在圆x2+y2=2外
C.必在圆x2+y2=2内 D.以上三种情形都有可能
C [∵e==,∴a=2c,∴b2=a2-c2=3c2.假设点P(x1,x2)不在圆x2+y2=2内,则x+x≥2,但x+x=2-2x1x2=+=+=<2,矛盾.
∴假设不成立.∴点P必在圆x2+y2=2内.故选C.]
3.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是________.
丙 [若甲是获奖的歌手,则都说假话,不合题意.
若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.
若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.
所以获奖的歌手是丙.]
4.设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2<2.
其中能推出“a,b中至少有一个大于1”的条件是________(填序号).
③ [假设a,b均不大于1,即a≤1,b≤1.则①②④均有可能成立,故①②④不能推出“a,b中至少有一个大于1”,故选③.]
5.等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.
[解] (1)设公差为d,由已知得
∴d=2,故an=2n-1+,Sn=n(n+).
(2)证明:由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0.
∵p,q,r∈N*,
∴
∴2=pr,(p-r)2=0,
∴p=r,这与p≠r矛盾.
所以数列{bn}中任意不同的三项都不可能成为等比数列.