(新课标)人教A版数学选修2-1(课件+教案+练习)第3章 3.1 3.1.4 空间向量的正交分解及其坐标表示:50张PPT

文档属性

名称 (新课标)人教A版数学选修2-1(课件+教案+练习)第3章 3.1 3.1.4 空间向量的正交分解及其坐标表示:50张PPT
格式 zip
文件大小 2.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-10-15 16:26:26

文档简介

课件50张PPT。第三章 空间向量与立体几何3.1 空间向量及其运算
3.1.4 空间向量的正交分解及其坐标表示xa+yb+zc 基底 垂直单位基底的判断 用基底表示向量 空间向量的坐标表示 点击右图进入…Thank you for watching !3.1.4 空间向量的正交分解及其坐标表示
学 习 目 标
核 心 素 养
1.了解空间向量基本定理及其意义.
2.掌握空间向量的正交分解及其坐标表示.(难点)
3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)
1.通过基底概念的学习,培养学生数学抽象的核心素养.
2.借助基底的判断及应用、空间向量的坐标运算,提升逻辑推理、直观想象及数学运算的核心素养.
1.空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+y_b+zc.
其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.
思考:(1)零向量能不能作为一个基向量?
(2)当基底确定后,空间向量基本定理中实数组{x,y,z}是否唯一?
[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个非零向量共面.
(2)唯一确定.
2.空间向量的正交分解及其坐标表示
单位正交基底
有公共起点O的三个两两垂直的单位向量,记作e1,e2,e3
空间直角坐标系
以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系O-xyz
空间向量的坐标表示
对于空间任意一个向量p,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,则把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z)
1.已知i,j,k是空间直角坐标系O-xyz的坐标向量,并且=-i+j-k,则B点的坐标为(  )
A.(-1,1,-1)   B.(-i,j,-k)
C.(1,-1,-1) D.不确定
D [向量确定时,终点坐标随着起点坐标的变化而变化,本题中起点没固定,所以终点的坐标也不确定.]
2.在长方体ABCD-A1B1C1D1中,可以作为空间向量一个基底的是(  )
A.,, B.,,
C.,, D.,,
C [由题意知,,,不共面,可以作为空间向量的一个基底.]
3.设{e1,e2,e3}是空间向量的一个单位正交基底,a=4e1-8e2+3e3,b=-2e1-3e2+7e3,则a,b的坐标分别为________.
a=(4,-8,3) b=(-2,-3,7) [由题意知a=(4,-8,3),b=(-2,-3,7).]
4.在长方体ABCD-A1B1C1D1中,下列关于的表达式中:
①++;
②++;
③++;
④(+)+.
正确的个数有________个.
3 [++=+=+≠,
②不正确;
(+)+=(+)+=+=,④正确;①③明显正确.]
 基底的判断
【例1】 (1)设x=a+b,y=b+c,z=c+a,且{a,b,c}是空间的一个基底,给出下列向量组:①{a,b,x},②{x,y,z},③{b,c,z},④{x,y,a+b+c}.其中可以作为空间一个基底的向量组有(  )
A.1个 B.2个    
C.3个     D.4个
(2)已知{e1,e2,e3}是空间的一个基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,试判断{,,}能否作为空间的一个基底.
(1)C [如图所示,令a=,b=,c=,
则x=,y=,z=,
a+b+c=.由于A,B1,C,D1四点不共面,可知向量x,y,z也不共面,同理b,c,z和x,y,a+b+c也不共面,故选C.
]
(2)解:假设,,共面,由向量共面的充要条件知,存在实数x,y
使=x+y成立,
∴e1+2e2-e3=x(-3e1+e2+2e3)+y(e1+e2-e3),
即e1+2e2-e3=(y-3x)e1+(x+y)e2+(2x-y)e3
∴此方程组无解.
即不存在实数x,y使得=x+y,
所以,,不共面.
所以{,,}能作为空间的一个基底.
基底判断的基本思路及方法
(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.
(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.
②假设a=λb+μ c,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.
1.若{a,b,c}是空间的一个基底,试判断{a+b,b+c,c+a}能否作为空间的一个基底.
[解] 假设a+b,b+c,c+a共面,则存在实数λ,μ,使得a+b=λ(b+c)+μ(c+a),即a+b=μa+λb+(λ+μ)c.
∵{a,b,c}是空间的一个基底,∴a,b,c不共面.
∴此方程组无解.
即不存在实数λ,μ,使得a+b=λ(b+c)+μ(c+a),
∴a+b,b+c,c+a不共面.
故{a+b,b+c,c+a}能作为空间的一个基底.
 用基底表示向量
【例2】 如图,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC,设=a,=b,=c,E,F分别是PC,PB的中点,试用a,b,c表示:,,,.
思路探究:
→
→
[解] 连接BO,则==(+)=(c-b-a)=-a-b+c.
=+=+=+(+)=-a-b+c.
=+=++(+)=-a+c+
(-c+b)=-a+b+c.
===a.
1.本题考查空间向量基本定理的应用,注意结合已知和所求,观察图形,联想相关的运算法则和公式等,再对照目标及基底{a,b,c},将所求向量反复分拆,直到全部可以用基底表示为止.
2.基向量的选择和使用方法
(1)尽可能选择具有垂直关系的,从同一起点出发的三个向量作为基底.
(2)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑加法,否则考虑减法;如果此向量与一个易求的向量共线,可用数乘.
2.点P是矩形ABCD所在平面外一点,且PA⊥平面ABCD,M,N分别是PC,PD上的点,且=,=,则满足=x+y+z的实数x,y,z的值分别为(  )
A.-,,   B.,-,
C.-,,- D.-,-,
D [如图所示,取PC的中点E,连接NE,则=-=
-(-)=-
=-
=--(-++)=--+,比较知x=-,y=-,z=,故选D.]
 空间向量的坐标表示
[探究问题]
1.在正三棱柱ABC-A1B1C1中,已知△ABC的边长为1,三棱柱的高为2,如何建立适当的空间直角坐标系?
[提示] 分别取BC,B1C1的中点D,D1,以D为原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如图所示.
2.若=(a,b,c),则的坐标是多少?
[提示] =(-a,-b,-c).
【例3】 如图,在直三棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别为A1B1,A1A的中点,试建立恰当的坐标系求向量,,的坐标.
思路探究:以点C为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,然后,把BN,,分别用,,表示出来,再写出它们的坐标.
[解] 法一:由题意知CC1⊥AC,CC1⊥BC,AC⊥BC,以点C为原点,分别以CA,CB,CC1的方向为x轴,y轴,z轴的正方向建立空间直角坐标系C-xyz,如图所示.
∴=-=+-=-+,∴的坐标为(1,-1,1),
而=-=-+,
∴的坐标为(1,-1,2).
又∵=-,∴的坐标为(-1,1,-2).
法二:建系同法一,则B(0,1,0),A(1,0,0),A1(1,0,2),N(1,0,1),
∴=(1,-1,1),=(1,-1,2),=(-1,1,-2).
用坐标表示空间向量的步骤
3.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别为棱BB1,DC的中点,如图所示建立空间直角坐标系.
(1)写出各顶点的坐标;
(2)写出向量,,的坐标.
[解] (1)由题图知A(2,0,0),B(2,2,0),C(0,2,0),D(0,0,0),A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),
(2)因为E,F分别为棱BB1,DC的中点,
由中点坐标公式,得E(2,2,1),F(0,1,0).
所以=(-2,-1,-1),=(-2,-1,-2),=(0,2,-1).
1.基底中不能有零向量.因零向量与任意一个非零向量都为共线向量,与任意两个非零向量都共面,所以三个向量为基底隐含着三个向量一定为非零向量.
2.空间几何体中,要得到有关点的坐标时,先建立适当的坐标系,一般选择两两垂直的三条线段所在直线为坐标轴,然后选择基向量,根据已知条件和图形关系将所求向量用基向量表示,即得所求向量的坐标.
3.用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.
1.O,A,B,C为空间四点,且向量,,不能构成空间的一个基底,则(  )
A.,,共线  B.,共线
C.,共线 D.O,A,B,C四点共面
D [由题意知,向量,,共面,从而O,A,B,C四点共面.]
2.设OABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.   B.
C. D.
A [如图,由已知=1
=(+)
=[+(+)]
=+[(-)+(-)]
=++,
从而x=y=z=.]
3.三棱锥P-ABC中,∠ABC为直角,PB⊥平面ABC,AB=BC=PB=1,M为PC的中点,N为AC的中点,以{,,}为基底,则的坐标为________.
 [=-
=(+)-(+)
=-,
故=.]
4.如图所示,已知平行六面体ABCD-A1B1C1D1,设=a,=b,=c,P是CA1的中点,M是CD1的中点.用基底{a,b,c}表示以下向量:
(1);
(2).
[解] 如图,在平行六面体ABCD-A1B1C1D1中连接AC,AD1,
(1)=(+)
=(++)=(a+b+c).
(2)=(+)
=(+2+)
=a+b+c.
课时分层作业(十六) 空间向量的正交分解及其坐标表示
(建议用时:60分钟)
[基础达标练]
一、选择题
1.给出下列命题:
①若{a,b,c}可以作为空间的一个基底,d与c共线,d≠0,则{a,b,d}也可以作为空间的一个基底;
②已知向量a∥b,则a,b与任何向量都不能构成空间的一个基底;
③A,B,M,N是空间四点,若,,不能构成空间的一个基底,则A,B,M,N四点共面;
④已知{a,b,c}是空间的一个基底,若m=a+c,则{a,b,m}也是空间的一个基底.
其中正确命题的个数是(  )
A.1 B.2    
C.3   D.4
D [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然②正确.③中由,,不能构成空间的一个基底,知,,共面.又,,过相同点B,知A,B,M,N四点共面.所以③正确.下面证明①④正确:①假设d与a,b共面,则存在实数λ,μ,使得d=λa+μb,∵d与c共线,c≠0,∴存在实数k,使得d=kc.∵d≠,∴k≠0,从而c=a+b,∴c与a,b共面,与条件矛盾,∴d与a,b不共面.同理可证④也是正确的.于是①②③④四个命题都正确,故选D.]
2.在平行六面体ABCD-A1B1C1D1中,M是上底面对角线AC与BD的交点,若=a,=b,=c,则可表示为(  )
A.a+b+c  B.a-b+c
C.-a-b+c D.-a+b+c
D [由于=+=+(+)
=-a+b+c,故选D.]
3.正方体ABCD-A′B′C′D′中,O1,O2,O3分别是AC,AB′,AD′的中点,以{1,2,3}为基底,=x1+y+z3,则x,y,z的值是(  )
A.x=y=z=1 B.x=y=z=
C.x=y=z= D.x=y=z=2
A [=++
=(+)+(+)+(+)
=++=++,
由空间向量的基本定理,得x=y=z=1.]
4.已知点O,A,B,C为空间不共面的四点,且向量a=++,向量b=+-,则与a,b不能构成空间基底的向量是(  )
A. B.
C. D.或
C [因为a-b=2,所以a,b与共面,不能构成空间的一个基底.]
5.如图,在空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,B1E=A1B1,则等于(  )
A.
B.
C.
D.
C [由题图知B(1,1,0),E,所以=.]
二、填空题
6.已知空间的一个基底{a,b,c},m=a-b+c,n=xa+yb+c,若m与n共线,则x=________,y=________.
1 -1 [因为m与n共线,所以存在实数λ,使m=λn,即a-b+c=λxa+λyb+λc,于是有
解得]
7.如图, 在平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若=a,=b,=c,则=________.
-a+b-c [=-
=(+)-(+)=-+-=-a+b-c.]
8.已知PA垂直于正方形ABCD所在的平面,建立如图所示的空间直角坐标系,M,N分别是AB,PC的中点,并且PA=AD=1,则的坐标为________.
 [∵PA=AD=AB=1,且PA⊥平面ABCD,AD⊥AB,
∴M,P(0,0,1),C(-1,1,0),
则N.
∴=.]
三、解答题
9.如图,在平行六面体ABCD-A1B1C1D1中,=-,=,设=a,=b,=c,试用a,b,c表示.
[解] 连接AN,则=+.
由已知可得四边形ABCD是平行四边形,从而可得
=+=a+b,
=-=-(a+b),
又=-=b-c,
故=+=-=-
=b-(b-c),
所以=+=-(a+b)+b-(b-c)
=(-a+b+c).
10.如图,在正四棱锥P-ABCD中,底面ABCD是边长为1的正方形,O是AC与BD的交点,PO=1,M是PC的中点.设=a,=b,=c.
(1)用向量a,b,c表示.
(2)在如图的空间直角坐标系中,求的坐标.
[解] (1)∵=+,=,=,=-,=+,
∴=+(-)=+-(+)=-++=-a+b+c.
(2)a==(1,0,0),b==(0,1,0).
∵A(0,0,0),O,P,∴c==-=,
∴=-a+b+c=-(1,0,0)+(0,1,0)+=.
[能力提升练]
1.已知M,A,B,C四点互不重合且任意三点不共线,则下列式子中能使向量,,成为空间的一个基底的是(  )
A.=OA+OB+OC
B.=+
C.=++
D.=2-
C [对于选项A,由=x+y+z(x+y+z=1)?M,A,B,C四点共面,知,,共面;对于选项B,D,易知,,共面,故选C.]
2.已知在长方体ABCD-A1B1C1D1中,向量a在基底{,,}下的坐标为(2,1,-3),则向量a在基底{,,}下的坐标为(  )
A.(2,1,-3)    B.(-1,2,-3)
C.(1,-8,9) D.(-1,8,-9)
B [∵a=2+-3=2--3=-+2-3DD1,∴向量a在基底{,,}下的坐标为(-1,2,-3),故选B.]
3.在空间四边形ABCD中,=a-2c,=5a-5b+8c,对角线AC,BD的中点分别是E,F,则=________.
3a-b+3c [=(+)=(+)+(+)=+++++=(+)=3a-b+3c.]
4.已知向量p在基底{a,b,c}下的坐标为(2,1,-1),则p在基底{2a,b,-c}下的坐标为________;在基底{a+b,a-b,c}下的坐标为__________.
(1,1,1)  [由题意知p=2a+b-c,
则向量p在基底{2a,b,-c}下的坐标为(1,1,1),
设向量p在基底{a+b,a-b,c}下的坐标为(x,y,z),则
p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
又∵p=2a+b-c,
∴,
解得x=,y=,z=-1;
∴p在基底{a+b,a-b,c}下的坐标为.]
5.已知{e1,e2,e3}为空间的一个基底,且=2e1-e2+3e3,=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3.
(1)判断P,A,B,C四点是否共面.
(2)能否以{,,}作为空间的一个基底?若能,试以这一基底表示;若不能,请说明理由.
[解] (1)假设P,A,B,C四点共面,
则存在实数x,y,z,使=x+y+z,且x+y+z=1,
即2e1-e2+3e3=x(e1+2e2-e3)+y(-3e1+e2+2e3)+z(e1+e2-e3).
比较对应的系数,得到关于x,y,z的方程组
,
解得,与x+y+z=1矛盾,
故P,A,B,C四点不共面.
(2)若OA,,共面,则存在实数m,n,使=m+n,
同(1)可证,,,不共面,
因此{,,}可以作为空间的一个基底,令=a,=b,=c,
由e1+2e2-e3=a,-3e1+e2+2e3=b,e1+e2-e3=c,
得,
所以=2e1-e2+3e3=2(3a-b-5c)-(a-c)+3(4a-b-7c)=17a-5b-30c=17-5-30.