直角三角形----知识讲解(提高)
【学习目标】
1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.
2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.
3. 能够熟练地掌握直角三角形的全等判定方法(HL)及其应用.
【要点梳理】
要点一、勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.
要点诠释:
(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
(3)理解勾股定理的一些变式:,, .
(4)勾股数:满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.
熟悉下列勾股数,对解题会很有帮助:
3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……
② 如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.
③(是自然数)是直角三角形的三条边长;
④(是自然数)是直角三角形的三条边长;
⑤ (是自然数)是直角三角形的三条边长.
要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
要点三、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
要点诠释:
(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.
(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
要点四、如何判定一个三角形是否是直角三角形
首先确定最大边(如).
验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.
要点诠释:
当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.
要点五、互逆命题与互逆定理
如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.
要点诠释:
原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.
要点六、直角三角形全等的判定(HL)
在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简
称“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.
要点诠释:
(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.
(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.
(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.
【典型例题】
类型一、勾股定理
1、(2019春?卢龙县期末)已知两条线段的长为3cm和4cm,当第三条线段的长为_________ cm时,这三条线段能组成一个直角三角形.
【思路点拨】本题从边的方面考查三角形形成的条件,涉及分类讨论的思考方法,即:由于“两边长分别为3和5,要使这个三角形是直角三角形,”指代不明,因此,要讨论第三边是直角边和斜边的情形.
【答案】5或.
【解析】解:①当第三边是直角边时,根据勾股定理,第三边的长==5,三角形的边长分别为3,4,5能构成三角形;②当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,,亦能构成三角形;
综合以上两种情况,第三边的长应为5或,
故答案为5或.
【总结升华】本题考查了勾股定理的逆定理,解题时注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.
2、(2019春?黔南州期末)长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.
【思路点拨】在折叠的过程中,BE=DE.从而设BE即可表示AE.在直角三角形ADE中,根据勾股定理列方程即可求解.
【答案与解析】
解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,
△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.
∴x=(cm).
答:DE的长为cm.
【总结升华】注意此类题中,要能够发现折叠的对应线段相等.
类型二、勾股定理的逆定理
3、如图所示,四边形ABCD中,AB⊥AD,AB=2,AD=,CD=3,BC=5,求∠ADC的度数.
【答案与解析】
解:∵ AB⊥AD,∴ ∠A=90°,
在Rt△ABD中,.
∴ BD=4,
∴ ,可知∠ADB=30°,
在△BDC中,,,
∴ ,∴ ∠BDC=90°,
∴ ∠ADC=∠ADB+∠BDC=30°+90°=120°.
【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理.
举一反三:
【变式1】△ABC三边满足,则△ABC是( )
A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形
【答案】D;
提示:由题意,,
因为,所以△ABC为直角三角形.
【变式2】(2019春?厦门校级期末)在四边形ABCD中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC的度数.
【答案】
解:连接BD,
∵AB=AD=2,∠A=60°,
∴△ABD是等边三角形,
∴BD=2,∠ADB=60°,
∵BC=2,CD=4,
则BD2+CD2=22+42=20,BC2=(2)2=20,
∴BD2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=150°.
类型三、勾股定理、逆定理的实际应用
4、如图所示,在一棵树的10高的B处有两只猴子,一只爬下树走到离树20处的池塘A处,另外一只爬到树顶D后直接跃到A处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?
【思路点拨】其中一只猴子从B→C→A共走了(10+20)=30,另一只猴子从B→D→A也共走了30,并且树垂直于地面,于是这个问题可化归到直角三角形中利用勾股定理解决.
【答案与解析】
解:设树高CD为,则BD=-10,AD=30-(-10)=40-,
在Rt△ACD中,,
解得:=15.
答:这棵树高15.
【总结升华】本题利用距离相等用未知数来表示出DC和DA,然后利用勾股定理作等量关系列方程求解.
举一反三:
【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)
【答案】
解:如图②所示,由题意可得:
,
在Rt△AA′B中,根据勾股定理得:
则AB=15.
所以需要爬行的最短路程是15.
5、(2019春?武昌区期中)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
【答案与解析】
解:1小时“远航”号的航行距离:OB=16×1=16海里;
1小时“海天”号的航行距离:OA=12×1=12海里,
因为AB=20海里,
所以AB2=OB2+OA2,即202=162+122,
所以△OAB是直角三角形,
又因为∠1=45°,
所以∠2=45°,
故“海天”号沿西北方向航行或东南方向航行.
【总结升华】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
类型四、原命题与逆命题
6、下列命题中,逆命题错误的是( )
A.平行四边形的对角线互相平分
B.有两对邻角互补的四边形是平行四边形
C.平行四边形的一组对边平行,另一组对边相等
D.两组对边分别相等的四边形是平行四边形
【答案】C;
【解析】
解:A的逆命题是:对角线互相平分的四边形是平行四边形.由平行四边形的判定可知这是真命题;B的逆命题是:平行四边形的两对邻角互补,由平行四边形的性质可知这是真命题;C的逆命题是:一组对边平行,另一组对边相等的四边形是平行四边形,也可能是等腰梯形,故是错误的;D的逆命题是:平行四边形的两组对边分别相等地,由平行四边形的性质可知这是真命题;故选C.
【总结升华】分别写出每个命题的逆命题,再判断其真假即可.此题主要考查学生对逆命题的定义的理解,要求学生对基础知识牢固掌握.
举一反三:
【变式】下列命题中,逆命题是真命题的是( )
A.对顶角相等
B.如果两个实数相等,那么它们的平方数相等
C.等腰三角形两底角相等
D.两个全等三角形的对应角相等
【答案】C;
解:A的逆命题是:相等的角是对顶角是假命题,故本选项错误,B的逆命题是:如果两实数的平方相等,那么两实数相等是假命题,故本选项错误,C的逆命题是:两底角相等的三角形是等腰三角形是真命题,故本选项正确,D的逆命题是:对角线相等的两个三角形是全都三角形是假命题,故本选项错误,故选C.
类型五、直角三角形全等的判定——“HL”
7、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
求证:AD=AE.
【思路点拨】证明线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.
【答案与解析】
证明:∵AB=AC,点D是BC的中点,∴∠ADB=90°,∵AE⊥EB,∴∠E=∠ADB=90°,∵AB平分∠DAE,∴∠EAB=∠DAB;
在△ADB与△AEB中,
∴△ADB≌△AEB(AAS),∴AD=AE.
【总结升华】此题考查线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
8、如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.
(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;
(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.
【答案与解析】
(1)证明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△ABE≌△CAF.
∴EA=FC,BE=AF.
∴EF=EA+AF.
(2)解:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△ABE≌△CAF.
∴EA=FC=3,BE=AF=10.
∴EF=AF-CF=10-3=7.
【总结升华】此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.
直角三角形——巩固练习(提高)
【巩固练习】
一.选择题
1.若直角三角形的三边长分别为3,4,,则的值为( )
A.5 B. C.5或 D.7
2.(2019?诏安县校级模拟)下列几组数中不能作为直角三角形三边长度的是( )
A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5
C. D.a=15,b=8,c=17
3.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
4. 为直角三角形的三边,且为斜边,为斜边上的高,下列说法:
①能组成一个三角形 ②能组成三角形
③能组成直角三角形 ④能组成直角三角形
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
5.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为( )
A. 1 B. 2 C. 5 D. 无法确定
6. 下列定理中,有逆定理的是( )
A.四边形的内角和等于360° B.同角的余角相等
C.全等三角形对应角相等 D.在一个三角形中,等边对等角
二.填空题
7.如图,在的正方形网格中,以AB为边画直角△ABC,使点C在格点上,这样的点C共 个.
8.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是则______.
9.(2019春?普宁市期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是 .
10.(2019春?滑县期末)如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,则三角形为 三角形.
11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则
∠BAD=_______.
12.在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,PR=PS,AQ=PQ,则下面三个结论:①AS=AR;②PQ∥AR;③△BRP≌△CSP.其中正确的是 .
三.解答题
13.(2019春?黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.
14.如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.
15.(2019春?建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.
(1)在图1中,当AB=AD=10m时,△ABD的周长为 ;
(2)在图2中,当BA=BD=10m时,△ABD的周长为 ;
(3)在图3中,当DA=DB时,求△ABD的周长.
【答案与解析】
一.选择题
1.【答案】C;
【解析】可能是直角边,也可能是斜边.
2.【答案】C;
【解析】解:A、满足勾股定理:72+242=252,故A选项不符合题意;
B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;
C、不满足勾股定理,不是勾股数,故C选项符合题意;
D、满足勾股定理:152+82=172,故D选项不符合题意.
故选:C.
3.【答案】C;
【解析】.
4.【答案】C;
【解析】因为,两边之和等于第三边,故不能组成一个三角形,①错误;因为,所以能组成三角形,②正确;因为,所以,即,③正确;因为,所以④正确.
5.【答案】A;
【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可
6. 【答案】D.
二.填空题
7. 【答案】8;
【解析】如图所示:有8个点满足要求.
8.【答案】4;
【解析】,故.
9.【答案】AC=DE;
【解析】解:AC=DE,
理由是:∵AB⊥DC,
∴∠ABC=∠DBE=90°,
在Rt△ABC和Rt△DBE中,
,
∴Rt△ABC≌Rt△DBE(HL).
故答案为:AC=DE.
10.【答案】直角;
【解析】解:∵a2+b2+c2+50=6a+8b+10c
∴a2+b2+c2﹣6a﹣8b﹣10c+50=0
即a2﹣6a+9+b2﹣8b+16+c2﹣10c+25=0
∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0
∴a=3,b=4,c=5
∵a2+b2=c2
∴三角形为直角三角形.
11.【答案】45°;
【解析】证△ADC与△BDF全等,AD=BD,△ABD为等腰直角三角形.
12.【答案】①②.
【解析】解:连接AP,
在Rt△ASP和Rt△ARP中,
PR=PS,PA=PA,
所以Rt△ASP≌Rt△ARP,
所以①AS=AR正确;
因为AQ=PQ,
所以∠QAP=∠QPA,
又因为Rt△ASP≌Rt△ARP,
所以∠PAR=∠PAQ,
于是∠RAP=∠QPA,
所以②PQ∥AR正确;
③△BRP≌△CSP,根据现有条件无法确定其全等.
故答案为:①②.
三.解答题
13.【解析】
解:由a2+b2+c2+338=10a+24b+26c,
得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,
即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,
由非负数的性质可得:,
解得,
∵52+122=169=132,即a2+b2=c2,
∴∠C=90°,
即三角形ABC为直角三角形.
14.【解析】
解:根据三角形全等的判定方法HL可知:
①当P运动到AP=BC时,
∵∠C=∠QAP=90°,
在Rt△ABC与Rt△QPA中,
∴Rt△ABC≌Rt△QPA(HL),
即AP=BC=5cm;
②当P运动到与C点重合时,AP=AC,
在Rt△ABC与Rt△QPA中,
,
∴Rt△QAP≌Rt△BCA(HL),
即AP=AC=10cm,
∴当点P与点C重合时,△ABC才能和△APQ全等.
综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.
15.【解析】
解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴DC==6(m),
则△ABD的周长为:10+10+6+6=32(m).
故答案为:32m;
(2)如图2,当BA=BD=10m时,
则DC=BD﹣BC=10﹣6=4(m),
故AD==4(m),
则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;
故答案为:(20+4)m;
(3)如图3,∵DA=DB,
∴设DC=xm,则AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=,
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).