高中物理教科版选修3-1 磁场 学案 Word版含解析

文档属性

名称 高中物理教科版选修3-1 磁场 学案 Word版含解析
格式 zip
文件大小 330.4KB
资源类型 教案
版本资源 教科版
科目 物理
更新时间 2019-10-15 14:05:08

图片预览

文档简介

章末总结 
/知 识 网 络 
/解题思路与方法 
本章起着承上启下的桥梁作用,是历年高考的热点.高考对本章考查的特点是:一般没有简单的概念题和单纯磁场知识题.考题多以磁力结合、磁电结合或磁力电结合的形式出现,而且试题难度往往较大,对考生的空间想象能力、逻辑推理能力、综合分析能力和运用数学知识处理物理问题的能力要求很高.因此在复习时要重视这些能力的培养,加强这些方面的训练.
求解磁场问题的基本思路:(1)审清题意,分析场的情况和受力情况;(2)分析运动情况,并画出运动轨迹图;(3)根据已知条件及所求量关系恰当选用规律求解.
求解磁场问题的常用方法:(1)安培力问题常常要把立体图化为平面图,再运用静力学或动力学的有关知识处理;(2)圆周运动问题一般按照:画轨迹、作半径、找圆心、求半径、求周期、求时间……的步骤处理;(3)复合场问题在分析清楚受力情况以后具体处理方法与力学问题的处理方法相同.
/体 验 高 考  
                  
/
1.(多选)(2018·全国卷Ⅰ)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是(  )
A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动
B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向
C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向
D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动
【解析】开关闭合的瞬间,左侧的线圈中磁通量变化,产生感应电动势和感应电流,由楞次定律可判断出直导线中电流方向为由南向北,由安培定则可判断出小磁针处电流产生的磁场方向垂直纸面向里,小磁针的N极朝垂直纸面向里的方向转动,选项A正确;开关闭合并保持一段时间后,左侧线圈中磁通量不变,线圈中感应电动势和感应电流为零,直导线中电流为零,小磁针恢复到原来状态,选项B、C错误;开关闭合并保持一段时间后再断开后的瞬间,左侧的线圈中磁通量变化,产生感应电动势和感应电流,由楞次定律可判断出直导线中电流方向为由北向南,由安培定则可判断出小磁针处电流产生的磁场方向垂直纸面向外,小磁针的N极朝垂直纸面向外的方向转动,选项D正确.
【答案】AD
/
2.(2018·全国卷Ⅰ)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,电场强度大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核H和一个氘核H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.H的质量为m,电荷量为q,不计重力.求:
(1)H第一次进入磁场的位置到原点O的距离;
(2)磁场的磁感应强度大小;
(3)H第一次离开磁场的位置到原点O的距离.
/
【解析】(1)H在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示.设H在电场中的加速度大小为a1,初速度大小为v1,它在电场中的运动时间为t1,第一次进入磁场的位置到原点O的距离为s1.由运动学公式有
s1=v1t1 ①
h=a1t ②
由题给条件,H进入磁场时速度的方向与x轴正方向夹角θ1=60°.H进入磁场时速度的y分量的大小为a1t1=v1tan θ1 ③
联立以上各式得s1=h ④
(2)H在电场中运动时,由牛顿第二定律有
qE=ma1 ⑤
设H进入磁场时速度的大小为v1′,由速度合成法则有v1′= ⑥
设磁感应强度大小为B,H在磁场中运动的圆轨道半径为R1,由洛伦兹力公式和牛顿第二定律有qv1′B= ⑦
由几何关系得s1=2R1sin θ1 ⑧
联立以上各式得B= ⑨
(3)设H在电场中沿x轴正方向射出的速度大小为v2,在电场中的加速度大小为a2,由题给条件得
(2m)v=mv ⑩
由牛顿第二定律有qE=2ma2 ?
设H第一次射入磁场时的速度大小为v2′,速度的方向与x轴正方向夹角为θ2,入射点到原点的距离为s2,在电场中运动的时间为t2.
/
由运动学公式有s2=v2t2 ?
h=a2t ?
v2′= ?
sin θ2= ?
联立以上各式得s2=s1,θ2=θ1,v2′=v1′ ?
设H在磁场中做圆周运动的半径为R2,由⑦?式及粒子在匀强磁场中做圆周运动的半径公式得
R2==R1 ?
所以出射点在原点左侧.设H进入磁场的入射点到第一次离开磁场的出射点的距离为s2′,由几何关系有s2′=2R2sin θ2 ?
联立④⑧???式得,H第一次离开磁场时得位置到原点O的距离为
s2′-s2=(-1)h ?
/
3.(多选)(2018·全国卷Ⅱ)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外.已知a、b两点的磁感应强度大小分别为B0和B0,方向也垂直于纸面向外.则(  )
A.流经L1的电流在b点产生的磁感应强度大小为B0
B.流经L1的电流在a点产生的磁感应强度大小为B0
C.流经L2的电流在b点产生的磁感应强度大小为B0
D.流经L2的电流在a点产生的磁感应强度大小为B0
【解析】设流经L1的电流在a点产生的磁感应强度大小为B1a,流经L2电流在a点产生的磁感应强度大小为B2a,已知a点的磁感应强度大小为B0,根据磁感应强度的叠加原理,考虑磁感应强度的方向,有B0-B1a-B2a=B0.同理,b点的磁感应强度大小为B0,有B0-B1b+B2b=B0.因为B1a=B1b=B1(因距离相等),B2a=B2b=B2,解得B1=B0,B2=B0.
【答案】AC
4.(2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.
(1)定性画出该粒子在电磁场中运动的轨迹;
(2)求该粒子从M点射入时速度的大小;
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间.
/
【解析】(1)粒子运动的轨迹如图a所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)
/
(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图b),速度沿电场方向的分量为v1,根据牛顿第二定律有
/
qE=ma ①
式中q和m分别为粒子的电荷量和质量,由运动学公式有v1=at ②
l′=v0t ③
v1=vcos θ ④
粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB= ⑤
由几何关系得l=2Rcos θ ⑥
联立①②③④⑤⑥式得v0= ⑦
(3)由运动学公式和题给数据得v1=v0cot  ⑧
联立①②③⑦⑧式得= ⑨
设粒子由M点运动到N点所用的时间为t′,则t′=2t+T ⑩
式中T是粒子在磁场中做匀速圆周运动的周期,T= ?
由③⑦⑨⑩?式得t′=(1+) ?
/
5.(2018·全国卷Ⅲ)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:
(1)磁场的磁感应强度大小;
(2)甲、乙两种离子的比荷之比.
【解析】(1)设甲种离子所带电荷量为q1、质量为m1,在磁场中做匀速圆周运动的半径为R1,磁场的磁感应强度大小为B,由动能定理有q1U=m1v ①
由洛伦兹力公式和牛顿第二定律有q1v1B=m1 ②
由几何关系知2R1=l ③
由①②③式得B= ④
/
(2)设乙种离子所带电荷量为q2、质量为m2,射入磁场的速度为v2,在磁场中做匀速圆周运动的半径为R2.同理有q2U=m2v ⑤
q2v2B=m2 ⑥
由题给条件有2R2= ⑦
由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为∶=1∶4 ⑧
/
6.(2017·全国卷Ⅰ)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为ma、mb、mc,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是(  )
A.ma>mb>mc B.mb>ma>mc
C.mc>ma>mb D.mc>mb>ma
/
【解析】三个微粒所受电场力大小相等,方向均向上,受力分析如图:
对a:mag=F电,
对b:mbg=F电+F洛b
对c:mcg=F电-F洛c
比较得:mb>ma>mc.
【答案】B
/
7.(多选)(2017·全国卷Ⅰ)如图,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反,下列说法正确的是(  )
A.L1所受磁场作用力的方向与L2、L3所在平面垂直
B.L3所受磁场作用力的方向与L1、L2所在平面垂直
C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶
D.L1、L2和L3单位长度所受的磁场作用力大小之比为∶∶1

/
【解析】由安培定则和磁感应强度的合成知,L2、L3中的电流在L1处的合磁场方向垂直于L2、L3所在的平面.再由左手定则得出L1受磁场作用力方向与L2、L3所在平面平行, A错;同理,可得出B对,在电流相同时,单位长度的导线所受磁场力跟磁感应强度成正比,L1、L2所在处磁感应强度大小相等,B1=B2=B0(B0为一根导线的电流产生的磁场),B3=B0,C对,D错.
【答案】BC
/
8.(2017·全国卷Ⅱ)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同的方向射入磁场,若粒子射入速度为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速度为v2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v2∶v1为(  )
A.∶2 B.∶1
C.∶1 D.3∶
/
【解析】如图所示,速度为v1时,PA为轨迹圆的直径,速度为v2时,PB为轨迹圆的直径,依v=,=,C对.
【答案】C
9.(多选)(2017·全国卷Ⅱ)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将(  )
/
A.左、右转轴下侧的绝缘漆都刮掉
B.左、右转轴上下两侧的绝缘漆都刮掉
C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉
D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉
【答案】AD
/
10.(2017·全国卷Ⅲ)如图,在磁感应强度大小为B0的匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度为零.如果让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为(  )
A.0 B.B0
C.B0 D.2B0
【解析】当P和Q中电流方向均垂直纸面向里时,由于:
aP=PQ=aQ=l.P和Q在a点产生的磁感应强度大小相同,方向如图(1)所示:
/
   图(1)         图(2)
其合磁感应强度为B1,由几何关系知:B1=2BPcos θ=BP.由题目可知,a点磁感应强度为零,则B0和B1等大反向,则可得:B0=B1=BP,并且B0方向水平向左.当P中电流反向后,其在a点产生的新的磁场方向如图(2)所示:P、Q在a点的合磁感应强度为B2,由几何关系知:B2=BP=B0,并且B2方向竖直向上.可得a点处磁感应强度的大小为:B==B0.
【答案】C
/
11.(2017·全国卷Ⅲ)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离.
【解析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力.设在x≥0区域,粒子做匀速圆周运动的半径为R1,周期为T1则
qv0B0= ①
T1= ②
由①②可得
T1= ③
设在x<0区域,粒子做匀速圆周运动的半径为R2,周期为T2则
qv0λB0= ④
T2= ⑤
由④⑤可得
T2= ⑥
粒子运动的轨迹如图所示,在两磁场中运动的时间分别为二分之一周期
/
故运动时间为
t=T1+T2 ⑦
由③⑥⑦可得
t= ⑧
(2)如图所示,粒子与O点间的距离为在两磁场中圆周运动的直径之差,即距离为
d=2R1-2R2 ⑨
由①④可得
R1= ⑩
R2= ?
由⑨⑩?可得
d=
/
12.(2017·天津)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:
(1)粒子到达O点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比.
【解析】(1)粒子在电场中由Q到O做类平抛运动,设O点速度v与+x方向夹角为α,Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,根据类平抛运动的规律,有:
/
x方向: 2L=v0t
y方向: L=at2
粒子到达O点时沿y轴方向的分速度为: vy=at
又: tan α=
解得: tan α=1,即α=45°,粒子到达O点时速度方向与x轴方向的夹角为45°角斜向上.
粒子到达O点时的速度大小为v==v0
(2)设电场强度为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,粒子在电场中运动的加速度: a=
设磁感应强度大小为B,粒子做匀速圆周运动的半径为R,洛伦兹力提供向心力,有:qvB=m
根据几何关系可知:R=L
整理可得: =
/
13.(2017·江苏)如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为(  )
A.1∶1 B.1∶2
C.1∶4 D.4∶1
【解析】根据磁通量的定义,当B垂直于S时,穿过线圈的磁通量为Φ=BS,其中S为有磁感线穿过区域的面积,所以图中a、b两线圈的磁通量相等,所以A正确;BCD错误.
【答案】A
14.(2017·江苏)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.
/
(1)求甲种离子打在底片上的位置到N点的最小距离x;
(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;
(3)若考虑加速电压有波动,在(U0-ΔU)到(U0+ΔU)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.
【解析】(1)设甲种离子在磁场中的运动半径为r1
电场加速qU0=×2mv2,且qvB=2m,
解得r1=
根据几何关系x=2r1-L,解得x=-L
(2)(见图) 最窄处位于过两虚线交点的垂线上
d=r1-
/
解得d=-
(3)设乙种离子在磁场中的运动半径为r2
r1的最小半径r1min=
r2的最大半径r2max=
由题意知2r1min-2r2max>L,
即->L
解得L<[2-]
15.(2017·北京)在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出的α粒子(He)在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q分别表示α粒子的质量和电荷量.
(1)放射性原子核用 X表示,新核的元素符号用Y表示,写出该α衰变的核反应方程.
(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小.
(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损Δm.
【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为X→Y+He
(2)设α粒子在磁场中做圆周运动的速度大小为v,由洛伦兹力提供向心力有qvB=m
根据圆周运动的参量关系有T=
得α粒子在磁场中运动的周期T=
根据电流强度定义式,可得环形电流大小为I==
(3)由qvB=m,得v=
设衰变后新核Y的速度大小为v′,核反应前后系统动量守恒,有Mv′-mv=0
可得v′==
根据爱因斯坦质能方程和能量守恒定律有
Δmc2=Mv′2+mv2
解得Δm=
说明:若利用M=m解答,亦可.