第二章 统计
2.1 随机抽样
2.1.3 分层抽样
学习目标
1.理解分层抽样的概念,掌握其实施步骤,培养发现问题和解决问题的能力.
2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高总结和归纳能力,领会到客观世界的普遍联系性.
合作学习
一、设计问题,创设情境
问题1:中国共产党某次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额比上次都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?
问题2:(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人.此地区教育部门为了了解本地区中小学生的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.你认为应当怎样抽取样本?
(2)想一想为什么这样抽取各个学段的个体数?
(3)请归纳分层抽样的定义.
(4)请归纳分层抽样的步骤.
(5)分层抽样时如何分层?其适用于什么样的总体?
二、信息交流,揭示规律
三、运用规律,解决问题
【例1】 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
【例2】 某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是( )
A.②③都不能为系统抽样 B.②④都不能为分层抽样
C.①④都可能为系统抽样 D.①③都可能为分层抽样
四、变式训练,深化提高
1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )
A.简单随机抽样 B.系统抽样
C.分层抽样 D.先从老年人中剔除1人,再用分层抽样
2.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
3.请同学们自己编出一个以我们班为总体的分层抽样的案例,比如说从我们班55名同学中选取10名同学参加足球知识问答比赛等.
五、反思小结,观点提炼
请同学们自己总结,并且得出结论.
布置作业
课本P64习题组2.1 A组第4,5,6题.
课后巩固:
1.某城区有农民、工人、知识分子家庭共计2 000户,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法是( )
①简单随机抽样 ②系统抽样 ③分层抽样
A.②③ B.①③ C.③ D.①②③
2.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是 .?
3.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?
参考答案
一、设计问题,创设情境
问题1:分层抽样.
二、信息交流,揭示规律
问题2:(1)分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.
(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.
(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.
(4)分层抽样的步骤:
①分层:按某种特征将总体分成若干部分(层);
②按抽样比确定每层抽取个体的个数;
③各层分别按简单随机抽样或系统抽样的方法抽取样本;
④综合每层抽样,组成样本.
(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.
②分层抽样为保证每个个体等可能入样,需遵循在各层中进行随机抽样,每层样本数量与样本容量的比与这层个体数量与总体容量的比相等.
③当总体个体差异明显时,采用分层抽样.
三、运用规律,解决问题
【例1】 分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.
解:用分层抽样来抽取样本,步骤是:
(1)分层:按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.
(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽125×15=25人;在35岁至49岁的职工中抽280×15=56人;在50岁以上的职工中抽95×15=19人.
(3)在各层分别按抽签法或随机数法抽取样本.
(4)综合每层抽样,组成样本.
【例2】 解析:如果按分层抽样时,在一年级抽取108×10270=4人,在二、三年级各抽取81×10270=3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合.故D项正确.
答案:D
四、变式训练,深化提高
1.解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.
答案:D
2.分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×22+3+5=40;200×32+3+5=60;200×52+3+5=100.
解:用分层抽样来抽取样本,步骤是:
(1)分层:按区将20 000名高中生分成三层.
(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40,60,100.
(3)在各层分别按随机数法抽取样本.
(4)综合每层抽样,组成样本.
五、反思小结,观点提炼
分层抽样的特点是按比例抽样.
课后巩固:
1.D 2.5
3.解:用分层抽样抽取样本.
∵20500=125,即抽样比为125.
∴200×125=8,125×125=5,50×125=2.
故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.
抽样步骤:
①确定抽样比为125;
②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;
③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.