(共27张PPT)
13.4课题学习
最短路径问题
人教版八年级上册第十三章轴对称
1 理解轴对称、平移知识解决简单的最短路径问题.(重点)
2 感受由实际问题转化数学问题,建模思想、转化思想。(难点)
教学目标
1.如图,连接A、B两点的所有连线中,哪条最短?
为什么?
A
B
①
②
③
②最短,因为两点之间,线段最短
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?
P
l
A
B
C
D
PC最短,因为垂线段最短
复习回顾
3.在我们前面的学习中,还有哪些涉及比较线段大小
的基本事实?
三角形三边关系:两边之和大于第三边;
斜边大于直角边.
4.如图,如何做点A关于直线l的对称点?
A
l
A ′
“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.
现实生活中经常涉及到选择最短路径问题,本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.
一牧人饮马问题
两个定点和直线一动点的数学模型:
问题1 相传,古希腊亚历山大城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?
C
实际问题转化
数学问题
A
B
l
数学问题
作图问题:在直线l上求作一点C,使AC+BC最短问题.
A
B
l
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?
A
l
B
C
根据是“两点之间,线段最短”,可知这个交点即为所求.
连接AB,与直线l相交于一点C.
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
想一想:对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?
A
B
l
利用轴对称,作出点B关于直线l的对称点B′.
作法:
(1)作点B 关于直线l 的对称点B′;
(2)连接AB′,与直线l 相交于点C.
则点C 即为所求.
A
B
l
B ′
C
C ′
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
∴ AC′+BC′= AC′+B′C′.
在△AB′C′中,
AB′<AC′+B′C′,
∴ AC +BC<AC′+BC′.
即 AC +BC 最短.
A
B
l
B ′
C
“饮马问题”的思想,结合初中的基本几何图形,及直角坐标系中的函数图象等利用轴对称思想,将该问题转化为“两点间线段最短”,即“三角形两边之和大于第三边”的问题。饮马问题可归结为“求定直线上一动点与直线外两点的距离之和的最小值”问题的数学模型。
总结归纳:
1 如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________
练一练:
60°
2 如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置
A
B
C
D
●
N
解:AB=AC ,△ABC为等腰三角形, AD平分∠CAB,故点D是BC边的中点,即点B与点C关于直线AD对称.∵点M在AD上,故BM=CM.即MB+MN的最小值可转化为求MC+MN的最小值,故连接CN即可,线段CN的长即为MB+MN的最小值.
●
M
3 如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是( )
A.(0,3) B.(0,2)
C.(0,1) D.(0,0)
解析:作B点关于y轴对称点B′,连接AB′,交y轴于点C′,此时△ABC的周长最小,然后依据点A与点B′的坐标可得到BE、AE的长,然后证明△B′C′O为等腰直角三角形即可.
B′
C′
E
A
运用轴对称解决距离最短问题
运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核
心,所有作法都相同.
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?
B
A
A
B
N
M
造桥选址问题
思考:你能把这个问题转化为数学问题吗?
B
A
●
●
?
N
M
N
M
N
M
折
移
如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?
小组讨论
各抒己见
1.把A平移到岸边.
2.把B平移到岸边.
3.把桥平移到和A相连.
4.把桥平移到和B相连.
B
A
M
N
B
A
M
N
A'
B'
1.把A平移到岸边.
AM+MN+BN长度改变了
2.把B平移到岸边.
AM+MN+BN长度改变了
B
A
M
N
3.把桥平移到和A相连.
4.把桥平移到和B相连.
AM+MN+BN长度有没有改变呢?
问题解决
B
A
A1
M
N
如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.
理由:另任作桥M1N1,连接AM1,BN1,A1N1.
N1
M1
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.
在△A1N1B中,因为A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A到B的路径长为AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则A到B的路径长为AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE,
∴AC+CE+MN>AE+MN,
即AC+CD+DB >AM+MN+BN,
所以桥的位置建在MN处,A到B的路径最短.
A·
B
M
N
E
C
D
解决最短路径问题的方法
在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.
归纳总结
实际问题
转为数学问题
用旧知解决新知
联想旧知
解决实
际问题
l
A
B
C
1 已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.
(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小
(2)直接写出AM+AN与BM+BN的大小关系
解:画法:
①作点M关于射线OP的对称点M′;
②连接M′N交OP于点A;
③作点N关于射线OQ的对称点N′;
④连接N′M交OQ于点B,
●
M′
●
●
●
●
A
N′
B
课堂练习:
(2)AM+AN=BM+BN.
点A,B即为所求。
课堂小结
最短路径问题
原理:线段公理和垂线段最短
牧马人饮马问题
轴对称知识+线段公理
造桥选址问题
平移知识+线段公理
课外作业:
第93页
第15题