高中物理教科版选修3-4学案机械振动考点归纳 Word版含答案

文档属性

名称 高中物理教科版选修3-4学案机械振动考点归纳 Word版含答案
格式 zip
文件大小 91.0KB
资源类型 教案
版本资源 教科版
科目 物理
更新时间 2019-10-22 14:04:35

图片预览

内容文字预览

高中物理教科版选修3-4学案机械振动考点归纳
机械振动(实验:探究单摆的运动、用单摆测定重力加速度)
【基本概念、规律】
一、简谐运动
1.概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线的振动.
2.平衡位置:物体在振动过程中回复力为零的位置.
3.回复力
(1)定义:使物体返回到平衡位置的力.
(2)方向:时刻指向平衡位置.
(3)来源:振动物体所受的沿振动方向的合力.
4.简谐运动的表达式
(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反.
(2)运动学表达式:x=Asin (ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相.
5.描述简谐运动的物理量
定义
意义
振幅
振动质点离开平衡位置的最大距离
描述振动的强弱和能量
周期
振动物体完成一次全振动所需时间
描述振动的快慢,两者互为倒数:T=
频率
振动物体单位时间内完成全振动的次数
相位
ωt+φ
描述质点在各个时刻所处的不同状态
二、单摆
1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果细线的伸缩和质量都不计,球的直径比线的长度短得多,这样的装置叫做单摆.
2.视为简谐运动的条件:θ<5°.
3.回复力:F=G2=Gsin θ=x.
4.周期公式:T=2π.
5.单摆的等时性:单摆的振动周期取决于摆长l和重力加速度g,与振幅和振子(小球)质量都没有关系.
三、受迫振动及共振
1.受迫振动:系统在驱动力作用下的振动.做受迫振动的物体,它的周期(或频率)等于驱动力周期(或频率),而与物体的固有周期(或频率)无关.
2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图所示.
【重要考点归纳】
考点一 简谐运动的五个特征   
1.动力学特征
F=-kx,“-”表示回复力的方向与位移方向相反,k是比例系数,不一定是弹簧的劲度系数.
2.运动学特征
简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时x、F、a、Ep均增大,v、Ek均减小,靠近平衡位置时则相反.
3.运动的周期性特征
相隔T或nT的两个时刻振子处于同一位置且振动状态相同.
4.对称性特征
(1)相隔或T(n为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反.
(2)如图所示,振子经过关于平衡位置O对称的两点P、P′(OP=OP′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等.
(3)振子由P到O所用时间等于由O到P′所用时间,即tPO=tOP′.
(4)振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO.
5.能量特征
振动的能量包括动能Ek和势能Ep,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒.
6.(1)由于简谐运动具有周期性、往复性、对称性,因此涉及简谐运动时,往往出现多解.分析此类问题时,特别应注意,物体在某一位置时,位移是确定的,而速度不确定,时间也存在周期性关系.
(2)相隔(2n+1)的两个时刻振子的位置关于平衡位置对称,位移、速度、加速度等大反向.
考点二 简谐运动的图象的应用
某质点的振动图象如图所示,通过图象可以确定以下各量:
1.确定振动物体在任意时刻的位移.
2.确定振动的振幅.
3.确定振动的周期和频率.振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期.
4.确定质点在各时刻的振动方向.
5.比较各时刻质点加速度的大小和方向.
6.(1)简谐运动的图象不是振动质点的轨迹,它表示的是振动物体的位移随时间变化的规律;
(2)因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t轴;
(3)速度方向可以通过下一个时刻位移的变化来判定,下一个时刻位移如果增加,振动质点的速度方向就远离t轴,下一个时刻的位移如果减小,振动质点的速度方向就指向t轴.
考点三 受迫振动和共振
1.自由振动、受迫振动和共振的关系比较
自由振动
受迫振动
共振
受力情况
仅受回
复力
受驱动
力作用
受驱动
力作用
振动周期
或频率
由系统本身性质决定,即固有周期T0或固有频率f0
由驱动力的周期或频率决定,即T=T驱或f=f驱
T驱=T0
或f驱=f0
振动能量
振动物体的机械能不变
由产生驱动力的物体提供
振动物体获得的能量最大
常见例子
弹簧振子或单摆(θ≤5°)
机械工作时底座发生的振动
共振筛、声音的共鸣等
2.对共振的理解
(1)共振曲线:如图所示,横坐标为驱动力频率f,纵坐标为振幅A.它直观地反映了驱动力频率对某振动系统受迫振动振幅的影响,由图可知,f与f0越接近,振幅A越大;当f=f0时,振幅A最大.
(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系统与外界时刻进行能量交换.
3.(1)无论发生共振与否,受迫振动的频率都等于驱动力的频率,但只有发生共振现象时振幅才能达到最大.
(2)受迫振动系统中的能量转化不再只有系统内部动能和势能的转化,还有驱动力对系统做正功补偿系统因克服阻力而损失的机械能.
考点四 实验:用单摆测定重力加速度
1.实验原理
由单摆的周期公式T=2π,可得出g=l,测出单摆的摆长l和振动周期T,就可求出当地的重力加速度g.
2.实验器材
单摆、游标卡尺、毫米刻度尺、停表.
3.实验步骤
(1)做单摆:取约1 m长的细丝线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,如图所示.
(2)测摆长:用毫米刻度尺量出摆线长L(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l=L+.
(3)测周期:将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆摆动30~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.
(4)改变摆长,重做几次实验.
4.数据处理
(1)公式法:g=.
(2)图象法:画l-T2图象.
g=4π2k,k==.
5.注意事项
(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.
(2)单摆必须在同一平面内振动,且摆角小于10°.
(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.
(4)小球自然下垂时,用毫米刻度尺量出悬线长L,用游标卡尺测量小球的直径,然后算出摆球的半径r,则摆长l=L+r.
(5)选用一米左右的细线.
【思想方法与技巧】
单摆模型的应用
(1)单摆模型指符合单摆规律的模型,须满足以下三个条件:①圆弧运动;②小角度往复运动;③回复力满足F=-kx.
(2)处理方法:首先确认符合单摆模型的条件,即小球沿光滑圆弧运动,小球受重力、轨道支持力,此支持力类似单摆中的摆线拉力,此装置可称为“类单摆”;然后寻找等效摆长l及等效加速度g;最后利用公式T=2π或简谐运动规律分析求解问题.
(3)须注意单摆模型做简谐运动时具有往复性,解题时要审清题意,防止漏解或多解.