法拉第电磁感应定律 自感 涡流
【基本概念、规律】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.
(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E=n,n为线圈匝数.
3.导体切割磁感线的情形
(1)若B、l、v相互垂直,则E=Blv.
(2)若B⊥l,l⊥v,v与B夹角为θ,则E=Blvsin_θ.
二、自感与涡流
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E=L.
(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.
交流感应电动机就是利用电磁驱动的原理工作的.
【重要考点归纳】
考点一 公式E=nΔΦ/Δt的应用
1.感应电动势大小的决定因素
(1)感应电动势的大小由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.
(2)当ΔΦ仅由B引起时,则E=n;当ΔΦ仅由S引起时,则E=n.
2.磁通量的变化率是Φ-t图象上某点切线的斜率.
3.应用电磁感应定律应注意的三个问题
(1)公式E=n求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.
(2)利用公式E=nS求感应电动势时,S为线圈在磁场范围内的有效面积.
(3)通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关.推导如下:q=Δt=Δt=.
考点二 公式E=Blv的应用
1.使用条件
本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blvsin θ,θ为B与v方向间的夹角.
2.使用范围
导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即=Bl.若v为瞬时速度,则E为相应的瞬时感应电动势.
3.有效性
公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为
甲图:l=cdsin β.
乙图:沿v1方向运动时,l=;沿v2方向运动时,l=0.
丙图:沿v1方向运动时,l=R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.
4.相对性
E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.
5.感应电动势两个公式的比较
公式
E=n
E=Blv
导体
一个回路
一段导体
适用
普遍适用
导体切割磁感线
意义
常用于求平均电动势
既可求平均值也可求瞬时值
联系
本质上是统一的.但是,当导体做切割磁感线运动时,用E=Blv求E比较方便;当穿过电路的磁通量发生变化时,用E=n求E比较方便
考点三 自感现象的分析
1.自感现象“阻碍”作用的理解
(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.
(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.
2.自感现象的四个特点
(1)自感电动势总是阻碍导体中原电流的变化.
(2)通过线圈中的电流不能发生突变,只能缓慢变化.
(3)电流稳定时,自感线圈就相当于普通导体.
(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.
3.自感现象中的能量转化
通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.
4.分析自感现象的两点注意
(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.
(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.