章末过关检测
一、单项选择题(本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一个选项正确)
1.关于行星运动的规律,下列说法符合史实的是( )
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
解析:选B.开普勒在第谷的观测数据的基础上,总结出了行星运动的规律,B项正确;牛顿在开普勒总结的行星运动规律的基础上发现了万有引力定律,找出了行星运动的原因,A、C、D项错.
2.如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是( )
A.甲的向心加速度比乙的小
B.甲的运行周期比乙的小
C.甲的角速度比乙大
D.甲的线速度比乙大
解析:选A.根据G=ma得a=,故甲卫星的向心加速度小,选项A正确;根据G=mr,得T=2π,故甲的运行周期大,选项B错误;根据G=mω2r,得ω=,故甲运行的角速度小,选项C错误;根据G=,得v= ,故甲运行的线速度小,选项D错误.
3.某颗北斗导航卫星属于地球静止轨道卫星(即卫星相对于地面静止).则此卫星的( )
A.线速度大于第一宇宙速度
B.周期小于同步卫星的周期
C.角速度大于月球绕地球运行的角速度
D.向心加速度大于地面的重力加速度
解析:选C.第一宇宙速度7.9 km/s是卫星绕地球做圆周运动的最大环绕速度,故此卫星的线速度小于第一宇宙速度,A错误;根据题意,该卫星是一颗同步卫星,周期等于同步卫星的周期,故B错误;卫星绕地球做圆周运动时,万有引力提供向心力,根据=mω2r可知,绕行半径越小,角速度越大,故此卫星的角速度大于月球绕地球运行的角速度,C正确;根据an=可知,绕行半径越大,向心加速度越小,此卫星的向心加速度小于地面的重力加速度,D错误.
4.利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )
A.1 h B.4 h
C.8 h D.16 h
解析:选B.设地球半径为R,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r=2R.设地球自转周期的最小值为T,则由开普勒第三定律可得,=,解得T≈4 h,选项B正确.
5.“静止”在赤道上空的地球同步气象卫星将气象数据发回地面,为天气预报提供准确、全面和及时的气象资料.设地球同步卫星的轨道半径是地球半径的n倍,下列说法中正确的是( )
A.同步卫星的运行速度是第一宇宙速度的
B.同步卫星的运行速度是地球赤道上物体随地球自转获得的速度的
C.同步卫星的运行速度是第一宇宙速度的
D.同步卫星的向心加速度是地球表面重力加速度的
解析:选C.同步卫星绕地球做圆周运动,由万有引力提供向心力,则G=ma=m=mω2r=mr,得同步卫星的运行速度v=,又第一宇宙速度v1=,所以==,故选项A错误,选项C正确;a=,g=,所以==,故选项D错误;同步卫星与地球自转的角速度相同,则v=ωr,v自=ωR,所以==n,故选项B错误.
6.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火.已知它们的轨道半径R金A.a金>a地>a火 B.a火>a地>a金
C.v地>v火>v金 D.v火>v地>v金
解析:选A.金星、地球和火星绕太阳公转时万有引力提供向心力,则有G=ma,解得a=G,结合题中R金a地>a火,选项A正确,B错误;同理,有G=m,解得v=,再结合题中R金v地>v火,选项C、D均错误.
二、多项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多个选项符合题目要求,全选对的得6分,选对但不全的得3分,有错选或不答的得0分)
7.在圆轨道上做匀速圆周运动的国际空间站里,一宇航员手拿一只小球相对于太空舱静止“站立”于舱内朝向地球一侧的“地面”上,如图所示.下列说法正确的是( )
A.宇航员相对于地球的速度介于7.9 km/s与11.2 km/s之间
B.若宇航员相对于太空舱无初速度释放小球,小球将继续做匀速圆周运动
C.宇航员不受地球的引力作用
D.宇航员对“地面”的压力等于零
解析:选BD.7.9 km/s是发射卫星的最小速度,也是卫星环绕地球运行的最大速度,可见,所有环绕地球运转的卫星、飞船等,其运行速度均小于7.9 km/s,故A错误;若宇航员相对于太空舱无初速度释放小球,由于惯性,小球仍具有原来的速度,所以地球对小球的万有引力正好提供它做匀速圆周运动需要的向心力,即G=m′,故选项B正确;在太空中,宇航员也要受到地球引力的作用,选项C错;在宇宙飞船中,宇航员处于完全失重状态,故选项D正确.
8.地球“空间站”正在地球赤道平面内的圆周轨道上运行,其离地高度为同步卫星离地高度的十分之一,且运行方向与地球自转方向一致.关于该“空间站”的说法正确的有( )
A.运行的加速度一定等于其所在高度处的重力加速度
B.运行的速度等于同步卫星运行速度的倍
C.站在地球赤道上的人观察到它向东运动
D.在“空间站”工作的宇航员因受力平衡而在其中悬浮或静止
解析:选AC.空间站运行的加速度和所在位置的重力加速度均由其所受万有引力提供,故A正确;由G=m?v=,运行速度与轨道半径的二次方根成反比,并非与离地高度的二次方根成反比,故B错误;由G=mR?T=2πR,所以空间站运行周期小于地球自转的周期,故C正确;空间站宇航员所受万有引力完全提供向心力,处于完全失重状态,D错误.
9.“嫦娥三号”实施变轨控制,由距月面平均高度100 km的环月轨道成功进入近月点高度15 km、远月点高度100 km的椭圆轨道.关于“嫦娥三号”,下列说法正确的是( )
A.“嫦娥三号”的发射速度大于7.9 km/s
B.“嫦娥三号”在环月轨道上的运行周期大于在椭圆轨道上的运行周期
C.“嫦娥三号”变轨前沿圆轨道运动的加速度大于变轨后通过椭圆轨道远月点时的加速度
D.“嫦娥三号”变轨前需要先点火加速
解析:选AB.7.9 km/s是人造卫星的最小发射速度,要想往月球发射人造卫星,发射速度必须大于7.9 km/s,A对;“嫦娥三号”距月面越近运行周期越小,B对;飞船变轨前沿圆轨道运动时只有万有引力产生加速度,变轨后通过椭圆轨道远月点时也是只有万有引力产生加速度,所以两种情况下的加速度相等,C错;“嫦娥三号”变轨前需要先点火减速,才能做近心运动,D错.
10.2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )
A.质量之积
B.质量之和
C.速率之和
D.各自的自转角速度
解析:选BC.由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T= s,两中子星的角速度均为ω=,两中子星构成了双星模型,假设两中子星的质量分别为m1,m2,轨道半径分别为r1、r2,速率分别为v1、v2,则有:G=m1ω2r1、=m2ω2r2,又r1+r2=L=400 km,解得m1+m2=,A错误,B正确;又由v1=ωr1、v2=ωr2,则v1+v2=ω(r1+r2)=ωL,C正确;由题中的条件不能求解两中子星自转的角速度,D错误.
三、非选择题(本题共3小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)
11.(10分)借助于物理学,人们可以了解到无法用仪器直接测定的物理量,使人类对自然界的认识更完善.现已知太阳光经过时间t到达地球,光在真空中的传播速度为c,地球绕太阳的轨道可以近似认为是圆,地球的半径为R,地球赤道表面的重力加速度为g,地球绕太阳运转的周期为T.试由以上数据及你所知道的物理知识推算太阳的质量M与地球的质量m之比为多大(地球到太阳的间距远大于它们的大小).
解析:设地球绕太阳公转轨道半径为r,由万有引力定律得:G=mr ①
在地球表面:G=m′g ②
r=ct ③
由①②③可得:=.
答案:
12.(14分)一组太空人乘坐太空穿梭机,去修理距离地球表面6.0×105 m的圆形轨道上的哈勃太空望远镜H,机组人员使穿梭机S进入与H相同的轨道并关闭助推火箭,而望远镜则在穿梭机前方数千米处.如图所示,设G为引力常量,M为地球质量(已知地球半径R=6.4×106 m).
(1)在穿梭机内,一质量为70 kg的太空人的视重是多少?
(2)计算轨道上的重力加速度及穿梭机在轨道上的速率和周期.
解析:(1)穿梭机内的人处于完全失重状态,故视重为0.
(2)由mg=G得g=,g′=,
则==≈0.84,
所以轨道上的重力加速度
g′=0.84g=0.84×9.8 m/s2≈8.2 m/s2.
由G=m得v=,v′=,
则==≈0.96,
所以穿梭机在轨道上的速率
v′=0.96v=0.96×7.9 km/s≈7.6 km/s.
由v=得,穿梭机在轨道上的周期T== s≈5.8×103 s.
答案:(1)0 (2)8.2 m/s2 7.6 km/s 5.8×103 s
13.(16分)宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角为α,已知该星球的半径为R,引力常量为G,已知球的体积公式是V=πR3.求:
(1)该星球表面的重力加速度g;
(2)该星球的密度;
(3)该星球的第一宇宙速度.
解析:(1)小球在斜坡上做平抛运动时:
水平方向上:x=v0t ①
竖直方向上:y=gt2 ②
由几何知识tan α= ③
由①②③式得g=.
(2)对于星球表面的物体m0,有G=m0g
又V=πR3,故ρ==.
(3)该星球的第一宇宙速度等于它的近地卫星的运行速度,故G=m,又GM=gR2
解得v=.
答案:(1) (2) (3)