25.2 用列举法求概率同步练习(原卷+解析卷)

文档属性

名称 25.2 用列举法求概率同步练习(原卷+解析卷)
格式 zip
文件大小 2.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2019-10-24 20:09:00

文档简介

25.2用列举法求概率 同步练习
一.选择题(共8小题)
1.把标有号码1、2、3、4、5的5个乒乓球放在一个箱子中,摇匀后,从中任意取一个,记下号码后,放回摇匀,再从中任意取一个,则两号码之和大于2的概率是(  )
A. B. C. D.
2.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是(  )
A.3 B.4 C.1 D.2
3.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为(  )
A. B. C. D.
4.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是(  )
A.公平的 B.不公平的
C.先摸者赢的可能性大 D.后摸者赢的可能性大
5.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是(  )
A. B. C. D.
6.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的(  )
A.三边中线的交点 B.三边垂直平分线的交点
C.三条角平分线的交点 D.三边上高的交点
7.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是(  )
A. B. C. D.
8.有一首《对子歌》中写到“天对地,雨对风,大陆对长空”,现有四张书签,除正面写上“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是(  )
A. B. C. D.
二.填空题(共6小题)
9.启明中学周末有20人去万达看电影,20张票分别为A区第6排1号到20号,分票采取随机抽取的办法,小亮第一个抽取,他抽取的座位号是10号,接着小颖从其余的票中任意抽取一张,取得的一张恰与小亮邻座的概率是   .
10.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏   .(填“公平”或“不公平”)
11.如图,一个转盘的盘面被等分成四个扇形区域,并分别标有数字﹣1、0、1、2若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字的和等于0的概率为   .
12.随着互联网的兴起,涌现了一大批的新生事物,比如微信,支付宝,网购等,为人们的生活带来了极大的便利现在知道,甲、乙二人喜欢“微信”,丙喜欢“支付宝”,丁喜欢“网购”现从这四人中随机采访两人,则这两人喜欢的新生事物一样的概率为   .
13.两人一组,每人在纸上随机写一个不大于4的正整数,则两人所写的正整数恰好相同的概率是   .
14.现有五个小球,每个小球上面分别标着1,2,3,4,5这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同,把分别标有数字4、5的两个小球放入不透明的口袋A中,把分别标有数字1、2、3的三个小球放入不透明的口袋B中,现随机从A和B两个口袋中各取出一个小球,把从A口袋中取出的小球上标的数字记作m,从B口袋中取出的小球上标的数字记作n,且m﹣n=k,则y关于x的二次函数y=2x2﹣4x+k与x轴有交点的概率是   .
三.解答题(共4小题)
15.有三张正面分别标有数字﹣2,3,4的不透明卡片,它们除数字外都相同;现将它们背面朝上,洗匀后,从三张卡片中随机地抽出一张,记住数字将卡片放回,洗匀后,再从这三张卡片中随机抽出一张,记住数字.用列表或树状图的方法,求两次抽取的卡片上的数字符号不同的概率.
16.甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.
(1)用树状图或列表的方法,求甲获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由
17.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……
(1)随机掷一次骰子,则棋子跳动到点C处的概率是   .
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
18.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是   .
(2)图1中,∠α的度数是   ,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为a,b,c,d,e)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.
25.2用列举法求概率 同步练习
参考答案与试题解析
一.选择题(共8小题)
1.把标有号码1、2、3、4、5的5个乒乓球放在一个箱子中,摇匀后,从中任意取一个,记下号码后,放回摇匀,再从中任意取一个,则两号码之和大于2的概率是(  )
A. B. C. D.
解:如下表:
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
从上表可以看出,一次性共有20种可能结果,其中两号码之和大于2的共有24种,
所以两号码之和大于2的概率=,
故选:D.
2.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是(  )
A.3 B.4 C.1 D.2
解:由题意甲从袋中任意摸出一个球,若为绿球则获胜;甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜可知,
绿球与黑球的个数应相等,也为2x个,
列方程可得x+2x+2x=10,
解得x=2,
故选:D.
3.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为(  )
A. B. C. D.
解:列表如下:

1
2
1
(1,1)
(2,1)
2
(1,2)
(2,2)
所有等可能的情况有4种,其中两人同坐1号车的情况有1种,
所以两人同坐1号车的概率为,
故选:C.
4.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是(  )
A.公平的 B.不公平的
C.先摸者赢的可能性大 D.后摸者赢的可能性大
解:∵一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,
∴三个人摸到每种球的概率均相等,故这个游戏是公平的.
故选:A.
5.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是(  )
A. B. C. D.
解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是;
故选:C.
6.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的(  )
A.三边中线的交点 B.三边垂直平分线的交点
C.三条角平分线的交点 D.三边上高的交点
解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,
∴凳子应放在△ABC的三条垂直平分线的交点最适当.
故选:B.
7.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是(  )
A. B. C. D.
解:画树状图如下:
由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,
所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为=.
故选:B.
8.有一首《对子歌》中写到“天对地,雨对风,大陆对长空”,现有四张书签,除正面写上“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是(  )
A. B. C. D.
解:画树状图如下:
由树状图知,共有12种等可能结果,其中抽到的书签正好配成“对子”的有4种结果,
所以抽到的书签正好配成“对子”的概率为,
故选:B.
二.填空题(共6小题)
9.启明中学周末有20人去万达看电影,20张票分别为A区第6排1号到20号,分票采取随机抽取的办法,小亮第一个抽取,他抽取的座位号是10号,接着小颖从其余的票中任意抽取一张,取得的一张恰与小亮邻座的概率是  .
解:根据题意,小亮抽取的座号为10号后,还有19张票可以抽取,
则小颖从其余的票中任意抽取一张,共19种情况,而与小明邻座即抽到9与11号的情况共2种;
故取得的一张恰与小亮邻座的概率是;
即答案为:.
10.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 不公平 .(填“公平”或“不公平”)
解:从5、6、7中任意找两个数,积有35、30、42、25、36、49,其中30、35、42都是两次,即共9种情况,其中奇数的有4种,偶数的有5种,显然是不公平的.
故答案为:不公平
11.如图,一个转盘的盘面被等分成四个扇形区域,并分别标有数字﹣1、0、1、2若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字的和等于0的概率为  .
解:画树状图得:
∵共有16种等可能的结果,记录的两个数字的和等于0的由3种结果,
∴记录的两个数字的和等于0的概率为,
故答案为:.
12.随着互联网的兴起,涌现了一大批的新生事物,比如微信,支付宝,网购等,为人们的生活带来了极大的便利现在知道,甲、乙二人喜欢“微信”,丙喜欢“支付宝”,丁喜欢“网购”现从这四人中随机采访两人,则这两人喜欢的新生事物一样的概率为  .
解:根据题意画树状图如下:
共有12种等情况数,其中不一样的有2种,
所以这两人喜欢的新生事物一样的概率为:=;
故答案为:.
13.两人一组,每人在纸上随机写一个不大于4的正整数,则两人所写的正整数恰好相同的概率是  .
解:画树状图如下:
由树状图知,共有16种等可能结果,其中恰好相同的有4种,
所以两人所写的正整数恰好相同的概率是,
故答案为:.
14.现有五个小球,每个小球上面分别标着1,2,3,4,5这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同,把分别标有数字4、5的两个小球放入不透明的口袋A中,把分别标有数字1、2、3的三个小球放入不透明的口袋B中,现随机从A和B两个口袋中各取出一个小球,把从A口袋中取出的小球上标的数字记作m,从B口袋中取出的小球上标的数字记作n,且m﹣n=k,则y关于x的二次函数y=2x2﹣4x+k与x轴有交点的概率是  .
解:画树状图如下:
∵y关于x的二次函数y=2x2﹣4x+k与x轴有交点,
∴△=16﹣8k≥0,即k≤2,
则y关于x的二次函数y=2x2﹣4x+k与x轴有交点的概率为=,
故答案为:.
三.解答题(共4小题)
15.有三张正面分别标有数字﹣2,3,4的不透明卡片,它们除数字外都相同;现将它们背面朝上,洗匀后,从三张卡片中随机地抽出一张,记住数字将卡片放回,洗匀后,再从这三张卡片中随机抽出一张,记住数字.用列表或树状图的方法,求两次抽取的卡片上的数字符号不同的概率.
解:列表如下
﹣2
3
4
﹣2
﹣2,﹣2
3,﹣2
4,﹣2
3
﹣2,3
3,3
4,3
4
﹣2,4
3,4
4,4
因为有9种等可能的结果,其中数字为一正数,一负数的情况有4种,
所以两次抽取的卡片上的数字符号不同的概率.
16.甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.
(1)用树状图或列表的方法,求甲获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由
解:(1)画树状图为:
共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,
所以甲胜的概率==;
(2)这个游戏规则对甲、乙双方不公平.
理由如下:
∵甲胜的概率=,乙胜的概率=,
而≠,
∴这个游戏规则对甲、乙双方不公平.
17.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……
(1)随机掷一次骰子,则棋子跳动到点C处的概率是  .
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,
故答案为;
(2)列表如图:
共有16种可能,和为8可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.
18.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是 60(户) .
(2)图1中,∠α的度数是 54° ,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为a,b,c,d,e)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.
解:(1)由图表信息可知本次抽样调查测试的建档立卡贫困户的总户数=21÷35%=60(户)
故答案为:60(户)
(2)图1中,∠α的度数=×360°=54°; C级户数为:60﹣9﹣21﹣9=21(户),
补全条形统计图如图2所示:
故答案为:54°;
(3)估计非常满意的人数约为×10000=1500(户);
(4)由题可列如下树状图:
由树状图可以看处,所有可能出现的结果共有20种,选中e的结果有8种
∴P(选中e)==.