3 解方程(1)
预习指南:能运用等式的性质解方程,会正确解形如x±a=b、ax=b(a不等于0)、x÷a=b(a不等于0)、a-x=b、a÷x=b的方程。
温故
知新
1.如果x=y,根据等式的性质填空。
x-( )=y-a x+8=y+( ) x÷( )=y÷3.5 x×( )=y×c
/
2.教材第67页例1。
(1)一共有9个球,盒子里有x个,盒子外有3个。根据题意列方程为( )。
(2)根据等式的性质1,等式两边减去( ),左右两边仍然相等。天平演示:
/
(3)规范书写。
x+3=9
解:x+3-( )=9-( ) 依据( )
x=( )
(4)使方程左右两边相等的( )的值,叫做方程的( )。求方程的解的过程叫做( )。方程的解是一个( ),而解方程是一个( )。
(5)检验。方程左边=x+3 =( )+3 =( ) =方程右边所以,( )是方程的解。 检验方法:把x的值代入方程的( )边,然后检验方程的左右两边的结果是否( )
3.教材第68页例2。 3x=18 解:3x÷( )=18÷( ) 依据( ) x=( ) 4.教材第68页例3。 20-x=9 解:20-x+( )=9+( ) 依据( ) 20=9+x 9+x=20 9+x-( )=20-( ) 依据( ) x=( )
/
5.解方程。
x+3.2=4.6 5x=6 18-x=3
每日
口算
10÷2.5= 0.3÷0.06= 0÷0.31= 4.2×4=
1.6×0.5= 0.12÷4= 9÷4.5= 0.24÷12=
解方程(2)
预习指南:把“ax”和“x±b”看成一个整体,解形如ax±b=c(a不等于0)和a(x±b)=c(a不等于0)的方程。
温故
知新
1.解方程。
2.4x=6 x-1.8=4 5.7÷x=3
/
2.教材第69页例4。
(1)已知1盒铅笔有x支,由题意列等量关系式为3盒铅笔的支数+( )支=( )支,列方程为( )。
(2)把3x看成一个整体,根据等式的性质1,在等式的两边同时减去( ),得到3x=( ),再根据等式的性质2解方程。
3x+4=40 解:3x+4-( )=40-( )依据( ) 3x=36 3x÷( )=36÷( )依据( ) x=( ) 检验: 方程左边=3x+4 = = =所以,x=( )是方程的解。
3.教材第69页例5。
2(x-16)=8
解: 2(x-16)÷( )=8÷( ) 把( )看作一个整体。
x-16=4
x-16+( )=4+( )
x=( )
也可以这样解:
2(x-16)=8 解:2x-32=8 运用了( )律 2x-32+( )=8+( ) 2x=40 2x÷( )=40÷( ) x=( )
/
4.根据题意列方程并求出方程的解。
(1) / (2) /
每日
口算
90÷4.5= 21.3×3= 0.1÷2= 0.21×4=
0.4×5= 1.4÷0.7= 1.6÷0.2= 4.8÷8=
参考答案:
3 解方程(1)
1.a 8 3.5 c
2.(1)x+3=9
(2)3
(3)3 3 等式的性质1 6
(4)未知数 解 解方程 值 过程
(5)6 9 左 相等 x=6
3.3 3 等式的性质2 6
4.x x 等式的性质1 9 9 等式的性质1 11
5. x+3.2=4.6 解:x+3.2-3.2=4.6-3.2 x=1.4 5x=6 解:5x÷5=6÷5 x=1.2
18-x=3
解:18-x+x=3+x
3+x-3=18-3
x=15
每日口算:4 5 0 16.8 0.8 0.03 2 0.02
解方程(2)
1. 2.4x=6 解:2.4x÷2.4=6÷2.4 x=2.5 x-1.8=4 解:x-1.8+1.8=4+1.8 x=5.8
5.7÷x=3
解:5.7÷x×x=3×x
3x÷3=5.7÷3
x=1.9
2.(1)4 40 3x+4=40
(2)4 36 4 4 等式的性质1 3 3 等式的性质2 12
3×12+4 40 方程右边 12
3.2 2 x-16 16 16 20 乘法分配 32 32
2 2 20
4. (1) 2x+48=102 解:2x+48-48=102-48 2x÷2=54÷2 x=27 (2)2(x+25)=76 解:2(x+25)÷2 =76÷2 x+25-25=38-25 x=13
每日口算:20 63.9 0.05 0.84 2 2 8 0.6