课件39张PPT。第一章 计数原理第一章 计数原理m+nm×n×分类加法计数原理分步乘法计数原理两个计数原理的综合应用按ESC键退出全屏播放本部分内容讲解结束
[A 基础达标]
1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为( )
A.13 B.16
C.24 D.48
解析:选A.由分类加法计数原理可知,不同的走法种数为8+2+3=13(种).
2.(2019·郑州高二检测)如图,一条电路从A处到B处接通时,可构成线路的条数为( )
A.8 B.6
C.5 D.3
解析:选B.从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为2×3=6(条),故选B.
3.(2019·西安高二检测)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
A.40 B.16
C.13 D.10
解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.
4.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )
A.81 B.64
C.48 D.24
解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.
5.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )
A.15 B.12
C.5 D.4
解析:选A.分三类情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;
②当x=2时,y=0,1,2,3,4,有5种情况;
③当x=3时,y=0,1,2,3,有4种情况.
由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15(个).
6.十字路口来往的车辆,如果不允许回头,则不同的行车路线有________种.
解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线.
答案:12
7.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.
解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).
答案:7
8.(2019·海口高二检测)已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数个数为________.
解析:若y=ax2+bx+c为二次函数,则a≠0,要完成该事件,需分步进行:
第一步,对系数a有4种选法;
第二步,对系数b有5种选法;
第三步,对系数c有5种选法.
所以共有4×5×5=100(个)不同的二次函数.
答案:100
9.现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?
解:(1)分四类:第一类,从一班学生中选1人,有7种选法;
第二类,从二班学生中选1人,有8种选法;
第三类,从三班学生中选1人,有9种选法;
第四类,从四班学生中选1人,有10种选法.
所以,共有不同的选法N=7+8+9+10=34(种).
(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).
(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;
从一、三班学生中各选1人,有7×9种不同的选法;
从一、四班学生中各选1人,有7×10种不同的选法;
从二、三班学生中各选1人,有8×9种不同的选法;
从二、四班学生中各选1人,有8×10种不同的选法;
从三、四班学生中各选1人,有9×10种不同的选法.
所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
10.(2019·长沙高二检测)已知集合A={a,b,c},集合B={-1,0,1}.
(1)从集合A到B能构造多少个不同的函数?
(2)满足f(a)+f(b)+f(c)=0的函数有多少个?
解:(1)每个元素a,b,c都可以有3个数和它对应,故从A到B能构造3×3×3=27(个)不同的函数.
(2)列表如下:
f(a)
0
0
0
1
1
-1
-1
f(b)
0
1
-1
0
-1
1
0
f(c)
0
-1
1
-1
0
0
1
从表中可知满足f(a)+f(b)+f(c)=0的函数有7个.
[B 能力提升]
11.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )
A.3 B.4
C.6 D.8
解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).
12.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )
A.14 B.13
C.12 D.10
解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小关系.
若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;
若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,
此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.
所以(a,b)的个数为4+9=13(个).故选B.
13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?
解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:
(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400(种)结果.
(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.
因此共有不同结果17 400+11 400=28 800(种).
14.(选做题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?
解:法一:(直接法)若黄瓜种在第一块土地上,则有3×2×1=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2×1=6种不同的种植方法.故不同的种植方法共有6×3=18(种).
法二:(间接法)从4种蔬菜中选出3种种在三块土地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).
[A 基础达标]
1.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )
A.4种 B.5种
C.6种 D.12种
解析:选C.若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.
2.把3封信投到4个信箱,所有可能的投法共有( )
A.24种 B.4种
C.43种 D.34种
解析:选C.第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法,只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.
3.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有( )
A.512个 B.192个
C.240个 D.108个
解析:选D.能被5整除的四位数,可分为两类:一类是末位为0,由分步乘法计数原理,共有5×4×3=60个;另一类是末位为5,由分步乘法计数原理共有4×4×3=48个.由分类加法计数原理得所求的四位数共有60+48=108(个).
4.从1,2,3,4,5,6,7,8,9这9个数字中任取两个,其中一个作为底数,另一个作为真数,则可以得到不同对数值的个数为( )
A.64 B.56
C.53 D.51
解析:选C.由于1只能作为真数,则以1为真数,从其余各数中任取一数为底数,对数值均为0.从除1外的其余各数中任取两数分别作为对数的底数和真数,共能组成8×7=56(个)对数式,其中,log24=log39,log42=log93,log23=log49,log32=log94,重复了4次,所以得到不同对数值的个数为1+56-4=53.故选C.
5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )
A.4 320种 B.2 880种
C.1 440种 D.720种
解析:选A.第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4 320 (种)不同的涂色方法.
6.甲、乙、丙3个班各有3,5,2名三好学生,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种推选方法.
解析:分为三类:①甲班选1名,乙班选1名,根据分步乘法计数原理,有3×5=15(种)选法;②甲班选1名,丙班选1名,根据分步乘法计数原理,有3×2=6(种)选法;③乙班选1名,丙班选1名,根据分步乘法计数原理,有5×2=10(种)选法.综上,根据分类加法计数原理,共有15+6+10=31(种)推选方法.
答案:31
7.从1到200的自然数中,各个数位上都不含有数字8的自然数有________个.
解:第一类:一位数中除8外符合要求的有8个;
第二类:两位数中,十位上数字除0和8外有8种情况,而个位数字除8外,有9种情况,有8×9个符合要求;
第三类:三位数中,百位上数字是1的,十位和个位上数字除8外均有9种情况,有9×9个,而百位上数字是2的只有200符合.
所以总共有8+8×9+9×9+1=162(个).
答案:162
8.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项.
(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?
(2)有4名学生参加了这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?
解:(1)三个运动项目,共有六个奖项,由于甲获得一个奖项且甲可获得六个奖项中的任何一个,
所以甲有6种不同的获奖情况.
(2)每一项体育运动项目中冠军的归属都有4种不同的情况,故各项冠军获得者的不同情况有4×4×4=64(种).
9.把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.
(1)43 251是这个数列的第几项?
(2)这个数列的第96项是多少?
解:将由1,2,3,4,5这五个数字组成无重复数字的五位数按万位数字分类,共五类,每类组成的数字数为4×3×2×1=24个.
(1)万位数字为4,且比43 251小的数的个数有3×2×1+3×2×1+2+1=15个,所以43 251是这个数列的第3×24+15+1=88项.
(2)因为96=4×24,所以这个数列的第96项是45 321.
[B 能力提升]
10.(2019·平顶山高二检测)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )
A.12种 B.18种
C.24种 D.36种
解析:选A.先排第一列,因为每列的字母互不相同,所以共有3×2=6种不同的排法.
再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法.因此共有6×2×1=12种不同的排列方法.
11.从集合{1,2,3,…,11}中任选2个元素作为椭圆方程+=1中的m和n,则落在矩形区域B={(x,y)||x|<11且|y|<9}内的椭圆个数为________.
解析:根据题意,知当m=1时,n可等于2,3,…,8,共对应7个不同的椭圆;当m=2时,n可以等于1,3,4,…,8,共对应7个不同的椭圆.同理可得,当m=3,4,5,6,7,8时,各分别对应7个不同的椭圆;当m=9时,n可以等于1,2,…,8,共对应8个不同的椭圆;当m=10时,共对应8个不同的椭圆.综上所述,对应的椭圆共有7×8+8×2=72(个).
答案:72
12.用1,2,3,4四个数字可重复的排成三位数,并把这些三位数由小到大排成一个数列{an}.
(1)写出这个数列的前11项;
(2)若an=341,求项数n.
解:(1)111,112,113,114,121,122,123,124,131,132,133;
(2)比an=341小的数有两类:
①首位是1或2:
1
×
×
,
2
×
×
②首位是3:
3
1
×
3
2
×
3
3
×
故共有:2×4×4+1×3×4=44(项).因此an=341是该数列的第45项,即n=45.
13.(选做题)(1)从5种颜色中选出3种颜色,涂在一个四棱锥的五个顶点上,每一个顶点涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数;
(2)从5种颜色中选出4种颜色,涂在一个四棱锥的五个顶点上,每个顶点上涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数.
解:(1)如图,由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,则A,C必须颜色相同,B,D必须颜色相同,所以共有5×4×3×1×1=60种不同的涂色方法.
(2)法一:由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,则A,C可以颜色相同,B,D可以颜色相
同,并且两组中必有一组颜色相同,所以,先从两组中选出一组涂同一颜色,有2种选法(如:B,D颜色相同);再从5种颜色中,选出四种颜色涂在S,A,B,C四个顶点上,最后D涂B的颜色,有5×4×3×2=120种不同的涂色方法.根据分步乘法计数原理,共有2×120=240种不同的涂色方法.
法二:分两类.
第1类,C与A颜色相同.由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60种不同的涂色方法.共有5×4×3×1×2=120种不同的涂色方法;第2类,C与A颜色不同.由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60种不同的涂色方法.共有5×4×3×2×1=120种不同的涂色方法.由分类加法计数原理,共有120+120=240种不同的涂色方法.
课件36张PPT。第一章 计数原理第一章 计数原理组数问题选(抽)取与分配问题涂色(种植)问题按ESC键退出全屏播放本部分内容讲解结束