高中人教A版数学选修2-3(课件+练习)3.2 独立性检验的基本思想及其初步应用:41张PPT

文档属性

名称 高中人教A版数学选修2-3(课件+练习)3.2 独立性检验的基本思想及其初步应用:41张PPT
格式 zip
文件大小 3.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-11-08 20:40:43

文档简介


[A 基础达标]
1.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是(  )
A.100个心脏病患者中至少有99人打鼾
B.1个人患心脏病,则这个人有99%的概率打鼾
C.100个心脏病患者中一定有打鼾的人
D.100个心脏病患者中可能一个打鼾的人都没有
解析:选D.这是独立性检验,在犯错误的概率不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知答案应选D.
2.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:
作文成绩优秀
作文成绩一般
总计
课外阅读量较大
22
10
32
课外阅读量一般
8
20
28
总计
30
30
60
由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(  )
A.没有充足的理由认为课外阅读量大与作文成绩优秀有关
B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关
C.在犯错误的概率不超过0.001的前提下认为课外阅读量大与作文成绩优秀有关
D.在犯错误的概率不超过0.005的前提下认为课外阅读量大与作文成绩优秀有关
解析:选D.根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关.
3.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
以下各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为(  )
A.a=5,b=4,c=3,d=2
B.a=5,b=3,c=4,d=2
C.a=2,b=3,c=4,d=5
D.a=2,b=3,c=5,d=4
解析:选D.比较的大小,值越大,说明两个分类变量关系性越强.
选项A中,=;选项B中,=;选项C中,=;选项D中,=.
4.某班主任对全班50名学生进行了作业量的评价调查,所得数据如下表所示:
认为作业量大
认为作业量不大
总计
男生
18
9
27
女生
8
15
23
总计
26
24
50
则认为作业量的大小与学生的性别有关的犯错误的概率不超过(  )
A.0.01         B.0.025
C.0.10 D.无充分证据
解析:选B.因为K2的观测值k=≈5.059>5.024,所以认为作业量的大小与学生的性别有关的犯错误的概率不超过0.025.
5.独立性检验所采用的思路是:要研究X,Y两个分类变量彼此相关,首先假设这两个分类变量彼此________,在此假设下构造随机变量K2.如果K2的观测值较大,那么在一定程度上说明假设________.
解析:独立性检验的前提是假设两个分类变量无关系,然后通过随机变量K2的观测值来判断假设是否成立.
答案:无关系 不成立
6.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:
无效
有效
总计
男性患者
15
35
50
女性患者
6
44
50
总计
21
79
100
设H0:服用此药的效果与患者的性别无关,则K2的观测值k≈________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.
解析:由公式计算得K2的观测值k≈4.882.
因为k>3.841,所以我们有95%的把握认为服用此药的效果与患者的性别有关,从而出错的可能性为5%.
答案:4.882 5%
7.在调查的480名男性中有38名患有色盲,520名女性中有6名患有色盲,请列出2×2列联表,并估计色盲与性别是否有关系.
解:性别与色盲列联表
色盲
不色盲
合计

38
442
480

6
514
520
合计
44
956
1 000
因为在调查的480名男性中,色盲占 =,
在调查的520名女性中,色盲占=,
>,且两个比例的值相差较大,
故估计色盲与性别有关系.
[B 能力提升]
8.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如图所示的茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m
不超过m
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:K2=,
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
解:(1)第二种生产方式的效率更高,理由如下:
(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知m==80.
列联表如下:
超过m
不超过m
第一种生产方式
15
5
第二种生产方式
5
15
(3)由于K2==10>6.635,所以有99%的把握认为两种生产方式的效率有差异.
9.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩的平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段
[40,50)
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]

3
9
18
15
6
9

6
4
5
10
13
2
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上为优秀(含80分),请你根据已知条件作出2×2列联表,并判断是否在犯错误的概率不超过0.1的前提下认为数学成绩与性别有关.
优秀
非优秀
总计
男生
女生
总计
100
解:(1)男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,
女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,
因为男=女,所以从男、女生各自的平均分来看,并不能判断数学成绩与性别是否有关.
(2)由频数分布表可知,在抽取的100名学生中,“男生组”中数学成绩优秀的有15人,“女生组”中数学成绩优秀的有15人,据此可得2×2列联表如下:
优秀
非优秀
总计
男生
15
45
60
女生
15
25
40
总计
30
70
100
可得K2的观测值
k==≈1.79,
因为1.79<2.706,所以在犯错误的概率不超过0.1的前提下不能认为数学成绩与性别有关.
10.(选做题)2019年春节,“抢红包”成为社会热议的话题之一.某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如下表所示:
关注点高
关注点低
总计
男性用户
5
女性用户
7
8
总计
10
16
(1)把上表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关?
(2)现要从上述男性用户中随机选出3名参加一项活动,以X表示选中的男性用户中抢红包总次数超过10次的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
独立性检验统计量K2=,其中n=a+b+c+d.
解:(1)根据题意得2×2列联表如下:
关注点高
关注点低
总计
男性用户
3
5
8
女性用户
7
1
8
总计
10
6
16
K2的观测值k=≈4.27>3.841.
所以,在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关.
(2)随机变量X的所有可能取值为0,1,2,3.
P(X=0)==,P(X=1)==,
P(X=2)==,P(X=3)==.
得X的分布列为
X
0
1
2
3
P
E(X)=0×+1×+2×+3×=.
课件41张PPT。第三章 统计案例第三章 统计案例不同类别频数表{x1,x2}{y1,y2}相互影响频率特征有关系临界值观测值犯错误的概率没有发现足够证据等高条形图的应用独立性检验按ESC键退出全屏播放本部分内容讲解结束