高中人教A版数学选修2-3(课件+练习)2.2.2 事件的相互独立性:46张PPT

文档属性

名称 高中人教A版数学选修2-3(课件+练习)2.2.2 事件的相互独立性:46张PPT
格式 zip
文件大小 2.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-11-08 20:47:17

文档简介

课件46张PPT。第二章 随机变量及其分布第二章 随机变量及其分布P(A)P(B)B相互独立事件的判断相互独立事件同时发生的概率相互独立事件的综合应用按ESC键退出全屏播放本部分内容讲解结束
[A 基础达标]
1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A1表示第一次取得白球,A2表示第二次取得白球,则A1和A2是(  )
A.互斥事件
B.相互独立事件
C.对立事件
D.不相互独立的事件
解析:选D.因为P(A1)=,若A1发生了,P(A2)==;若A1不发生,P(A2)=,所以A1发生的结果对A2发生的结果有影响,所以A1与A2不是相互独立事件.
2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为(  )
A.0.2         B.0.8
C.0.4 D.0.3
解析:选D.由相互独立事件同时发生的概率可知,问题由乙答对的概率为P=0.6×0.5=0.3,故选D.
3.某种开关在电路中闭合的概率为p,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为,则p=(  )
A. B.
C. D.
解析:选B.因为该电路为通路的概率为,所以该电路为不通路的概率为1-,只有当并联的4只开关同时不闭合时该电路不通路,所以1-=(1-p)4,解得p=或p=(舍去).故选B.
4.(2019·重庆高二检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  )
A. B.
C. D.
解析:选A.由已知得逆时针跳一次的概率为,顺时针跳一次的概率为,则逆时针跳三次停在A上的概率为P1=××=,顺时针跳三次停在A上的概率为P2=××=.所以跳三次之后停在A上的概率为P=P1+P2=+=.
5.有一道数学难题,学生A解出的概率为,学生B解出的概率为,学生C解出的概率为.若A,B,C三人独立去解答此题,则恰有一人解出的概率为(  )
A.1 B.
C. D.
解析:选C.一道数学难题,恰有一人解出,包括:
①A解出,B,C解不出,概率为××=;
②B解出,A,C解不出,概率为××=;
③C解出,A,B解不出,概率为××=.
所以恰有1人解出的概率为++=.
6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.
解析:所求概率P=0.8×0.1+0.2×0.9=0.26.
答案:0.26
7.在如图所示的电路图中,开关a,b,c闭合与断开的概率都是,且是相互独立的,则灯亮的概率是________.
解析:设“开关a,b,c闭合”分别为事件A,B,C,则灯亮这一事件为ABC∪AB∪A C,且A,B,C相互独立,
ABC,AB,A C相互独立,
ABC,AB,A C互斥,所以
P=P(ABC)+P(AB)+P(AC)
=P(A)P(B)P(C)+P(A)P(B)P()+P(A)P()P(C)
=××+××+××=.
答案:
8.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________.
解析:分别设汽车在甲、乙、丙三处通行的事件为A,B,C,
则P(A)=,P(B)=,P(C)=,
停车一次为事件(BC)∪(AC)∪(AB),
故其概率P=××+××+××=.
答案:
9.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,求在一次考试中:
(1)三科成绩均未获得第一名的概率是多少?
(2)恰有一科成绩未获得第一名的概率是多少?
解:分别记该学生语、数、英考试成绩排名全班第一的事件为A,B,C,则A,B,C两两互相独立,
且P(A)=0.9,P(B)=0.8,P(C)=0.85.
(1)“三科成绩均未获得第一名”可以用  表示,
P(  )=P()P()P()
=[1-P(A)][1-P(B)][1-P(C)]
=(1-0.9)(1-0.8)(1-0.85)
=0.003,
即三科成绩均未获得第一名的概率是0.003.
(2)“恰有一科成绩未获得第一名”可以用
(BC)∪(AC)∪(AB)表示.
由于事件BC,AC和AB两两互斥,
根据概率加法公式和相互独立事件的意义,所求的概率为P(BC)+P(AC)+P(AB)
=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()
=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]
=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329,
即恰有一科成绩未获得第一名的概率是0.329.
10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,,,若对这三名短跑运动员的100 m跑的成绩进行一次检测,则
(1)三人都合格的概率;
(2)三人都不合格的概率;
(3)出现几人合格的概率最大.
解:记“甲、乙、丙三人100 m跑成绩合格”分别为事件A,B,C,显然事件A,B,C相互独立,
则P(A)=,P(B)=,P(C)=.
设恰有k人合格的概率为Pk(k=0,1,2,3),
(1)三人都合格的概率:
P3=P(ABC)=P(A)·P(B)·P(C)=××=.
(2)三人都不合格的概率:
P0=P(  )=P()·P()·P()=××=.
(3)恰有两人合格的概率:
P2=P(AB )+P(A C)+P(BC)
=××+××+××=.
恰有一人合格的概率:
P1=1-P0-P2-P3=1---==.
综合(1)(2)(3)可知P1最大.
所以出现恰有1人合格的概率最大.
[B 能力提升]
11.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为(  )
A. B.
C. D.
解析:选C.记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P()P()[1-P(AB)]=××=.所以灯亮的概率为1-=.
12.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任意取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.
解析:设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,
则D=B∪C,且B与C互斥,
又P(A)==,P(AB)==,P(AC)==,
故P(D|A)=P(B∪C|A)
=P(B|A)+P(C|A)
=+=.
答案:
13.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为、、,且三个项目是否成功互相独立.
(1)求恰有两个项目成功的概率;
(2)求至少有一个项目成功的概率.
解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为××(1-)=,
只有农产品加工和水果种植两个项目成功的概率为×(1-)×=,
只有绿色蔬菜种植和水果种植两个项目成功的概率为(1-)××=,
所以恰有两个项目成功的概率为++=.
(2)三个项目全部失败的概率为(1-)×(1-)×(1-)=,
所以至少有一个项目成功的概率为1-=.
14.(选做题)某公司为了了解用户对其产品的满意度,从A,B两个地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两个地区用户满意度评分的茎叶图,并通过茎叶图比较两个地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分
低于70分
70分到89分
不低于90分
满意度等级
不满意
满意
非常满意
记事件C表示“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两个地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
解:(1)两个地区用户的满意度评分的茎叶图如图.
通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.
(2)记CA1表示事件“A地区用户的满意度等级为满意或非常满意”,CA2表示事件“A地区用户的满意度等级为非常满意”,CB1表示事件“B地区用户的满意度等级为不满意”,CB2表示事件“B地区用户的满意度等级为满意”,则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,C=CB1CA1∪CB2CA2,
P(C)=P(CB1CA1∪CB2CA2)=P(CB1CA1)+P(CB2CA2)=P(CB1)P(CA1)+P(CB2)P(CA2).
由所给数据,得CA1,CA2,CB1,CB2发生的频率分别为,,,,故P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=,P(C)=×+×=0.48.