[A 基础达标]
1.下列事件中是随机事件的是( )
A.在数轴上向区间(0,1)内投点,点落在区间(0,1)内
B.在数轴上向区间(0,1)内投点,点落在区间(0,2)内
C.在数轴上向区间(0,2)内投点,点落在区间(0,1)内
D.在数轴上向区间(0,2)内投点,点落在区间(-1,0)内
解析:选C.当x∈(0,1)时,必有x∈(0,1),x∈(0,2),所以A和B都是必然事件;
当x∈(0,2)时,有x∈(0,1)或x?(0,1),所以C是随机事件;当∈(0,2)时,必有x?(-1,0),
所以D是不可能事件.故选C.
2.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为( )
A.男女、男男、女女
B.男女、女男
C.男男、男女、女男、女女
D.男男、女女
解析:选C.用列举法可知,性别情况有:男男、男女、女男、女女,共4种可能.
3.某人将一枚硬币连掷了10次,6次正面朝上,若用A表示“正面朝上”这一事件,则A出现的( )
A.概率为 B.频率为
C.频率为6 D.概率为6
解析:选B.事件A出现的频数是6,频率=,故频率是.
4.容量为20的样本数据,分组后的频数如下表:
分组
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70]
频数
2
3
4
5
4
2
则样本数据落在区间[10,40)上的频率为( )
A.0.35 B.0.45
C.0.55 D.0.65
解析:选B.在区间[10,40)的频数为2+3+4=9,所以频率为=0.45.
5.下列说法正确的有( )
①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,所以出现正面的概率是;
②盒子中装有大小均匀的3个红球,3个黑球,2个白球,每种颜色的球被摸到的可能性相同;
③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;
④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.
A.0个 B.1个
C.2个 D.3个
解析:选A.①中抛掷一枚均匀硬币出现正面的概率是;②中摸到白球的概率要小于摸到红球或黑球的概率;③中取得的数小于0的概率大于不小于0的概率;④中男生被抽到的概率为,而女生被抽到的概率为.
6.给出关系满足A?B的非空集合A,B的四个命题:
①若任取x∈A,则x∈B是必然事件;
②若任取x?A,则x∈B是不可能事件;
③若任取x∈B,则x∈A是随机事件;
④若任取x?B,则x?A是必然事件.
其中不正确的是________(把所有不正确的序号都填上).
解析:因为A?B,所以A中的元素都在B中,但是B中有些元素不在集合A中.所以①③④正确.
②中,若x?A,则有x∈B,x?B两种可能情况,因此②若任取x?A,则x∈B是随机事件.故填②.
答案:②
7.(2019·湖北省沙市中学期中考试)抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第998次抛掷恰好出现“正面向上”的概率为________.
解析:因为概率与抛掷次数无关,所以第998次抛掷恰好出现“正面向上”的概率等于1次抛掷恰好出现“正面向上”的概率,为.
答案:
8.做掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数,则这个试验不同的结果数有________种.
解析:将这个试验的所有结果一一列举出来为
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共有36种.
答案:36
9.有人对甲、乙两名网球运动员训练中一发成功次数做了统计,结果如下表:
一发次数n
10
20
50
100
200
500
甲一发成
功次数
9
17
44
92
179
450
一发成功
的频率
一发次数n
10
20
50
100
200
500
乙一发成
功次数
8
19
44
93
177
453
一发成功
的频率
请根据以上表格中的数据回答以下问题:
(1)分别计算出两位运动员一发成功的频率,完成表格;
(2)根据(1)中计算的结果估计两位运动员一发成功的概率.
解:(1)
一发次数n
10
20
50
100
200
500
甲一发成
功次数
9
17
44
92
179
450
一发成功
的频率
0.9
0.85
0.88
0.92
0.895
0.9
一发次数n
10
20
50
100
200
500
乙一发成
功次数
8
19
44
93
177
453
一发成功
的频率
0.8
0.95
0.88
0.93
0.885
0.906
(2)由第一问中的数据可知,随着一发次数的增多,两位运动员一发成功的频率都越来越集中在0.9附近,所以估计两人一发成功的概率均为0.9.
10.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
解:(1)当x=1时,y=2,3,4;
当x=2时,y=1,3,4;
当x=3时,y=1,2,4;
当x=4时,y=1,2,3.
因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).
(2)记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}.
[B 能力提升]
11.在进行n次重复试验中,事件A发生的频率为,当n很大时,事件A发生的概率P(A)与的关系是( )
A.P(A)≈ B.P(A)<
C.P(A)> D.P(A)=
解析:选A.对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).即P(A)≈.
12.对某厂生产的某种产品进行抽样检查,数据如下:
抽查件数
50
100
200
300
500
合格品件数
47
92
192
285
478
根据上表所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.
解析:抽查的产品总件数为1 150,合格品件数为1 094,合格率为≈0.95,950÷0.95=1 000,故大约需抽查1 000件产品.
答案:1 000
13.小明从某本书中随机抽取了6页,在统计了各页中“的”和“了”出现的次数后,分别求出了“的”和“了”出现的频率,并绘制了下图.
随着统计页数的增加,试估计“的”和“了”这两个字出现的频率将如何变化.
解:估计“的”字出现的频率在0.058附近摆动,“了”字出现的频率在0.01附近摆动.
14.(选做题)某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中的球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.所以估计袋中红球有15个.
课件41张PPT。第三章 概率第三章 概率一定不会发生一定会发生可能发生也可能不发生频数频率可能性大小频率fn(A)概率P(A)事件类型的判断随机试验结果的列举由频率估计随机事件的概率本部分内容讲解结束按ESC键退出全屏播放