冀教版 七年级上册数学第二章几何图形的初步认识2.5 角以及角的度量同步检测(解析版)

文档属性

名称 冀教版 七年级上册数学第二章几何图形的初步认识2.5 角以及角的度量同步检测(解析版)
格式 zip
文件大小 388.2KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2019-11-07 12:08:43

图片预览

文档简介

2.5 角以及角的度量
基础闯关全练
知识点一 角的定义及表示方法
1.如图2-5-1所示,表示∠∠的其他方法中,不正确的是 ( )

∠ACB B.∠C C.∠BCA D.∠ACD
2.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是 ( )
A. B. C. D.
3.如图2-5-2所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )

A.10 B.9 C.8 D.4
4.如图2-5-3所示.

(1) ∠α还可以表示为
(2)∠FCG还可以表示为
(3) ∠γ还可以表示为
(4) ∠1还可以表示为
(5) ∠BDE还可以表示为
知识点二 角的度量及换算
5.下列关于度分秒的换算正确的是 ( )
A.83.3°=83°30' B.37°12'36"= 37.48°
C.24°24'24"= 24.44° D.41.15°=41°9"
6.3 600"= °;0.5°= '= ".
7.用度、分、秒表示下列各角.
(1)54.12°; (2) (20)°.


8.用度表示下列各角.
(1) 43°30'36"; (2)65°25'12",


能力提升全练
1.如图2-5-4,∠AOB= 90°,以O为顶点的锐角共有 个.

2.(1)34.37°= ° ' ";
(2) 36°17'42"= °;
(3)62.125°= ° ' ";
(4) 41°18'36" = °.
3.根据下列步骤画图;
(1)画∠AOB= 100°;
(2)在∠AOB的内部两射线OC,使∠BOC= 50°;
(3)在∠AOB的外部画射线OD,使∠D0.4= 40°.



4.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分钟走多少度?当你弄清楚达些问题后,你能解决很多关于闹钟的问题.
(1)九点整时,时针与分针所夹的角是 度:
(2)1点20分时,时针与分针所夹的角是多少度?
(3)从1点15分到1点35分,分针与时针各转了多少度?




三年模拟全练
一、选择题
1.钟表在2点半时,其时针和分针所夹的角是 ( )
A.60° B.75° C.105° D.120°
二、填空题
2.56°48'= °; 4.3°=
五年中考全练
一、选择题
1.(2017河北中考,3)用量角器测量∠MON的度数,下列操作正确的是 ( )
A. B.
C. D.
二、填空题
2.(2016四川雅安中考,13)1.45°= '.
核心素养全练
1.如图2-5-5,有公共端点的4条不同射线可组成多少个角?若有10条这样的射线呢?有n(n为不小于2的正整数)条这样的射线呢?(提示:1+2+3+…+n=)




2.某火车站的钟楼上装有一个电子报时钟,在钟面的边界上,每一分钟的刻度处都装有一只小彩灯.
(1)晚上9时30分,时针与分针所夹的角内有多少只小彩灯(包括分针处的彩灯)?
(2)晚上9时35分20秒,时针与分针所夹的角内有多少只小彩灯?














答案
基础闯关全练
B
解析:由题图知,∠ACB,∠BCA与∠ACD所表示的角都是∠1,因为以C为顶点的角不止一个,所以选项B不正确.
D
解析:A项,图中的∠AOB不能用∠O表示,故A项不符合题意;B项,图中的∠1和∠AOB不表示同一个角,故B项不符合题意;C项,图中的∠1和∠AOB不表示同一个角,故C项不符合题意;D项,图中∠1,∠AOB,∠O表示同一个角,故D项符合题意,故选D.
A
解析:引出五条射线时,以OA为始边的角有4个,以OD为始边的角有3个,以OC为始边的角有2个,以OE为始边的角有1个,且它们均小于平角,故小于平角的角的个数是4+3+2+1= 10.
4.答案 (1) ∠ACF (2) ∠β (3) ∠GCB( ∠GCD)
(4) ∠ADE(∠CDE) (5) ∠2
解析 当用三个大写英文字母表示角时,角的顶点对应的字母应写在中间,其余两个字母的位置是任意的.
5.D
解析:A.83.3°=83°18',故A错误;B.37°12'36"= 37. 21°,故B错误;C.24°24'24"≈24. 407°,故C错误;D.41. 15°=41°9',故D正确,故选D.
6.答案1;30;1 800
解析3 600"=1°;0.5°=30'=1 800".
7.解析(1)先把0.12°化为分,60'x0. 12=7.2',再把0.2'化为秒.60"x0.2= 12",所以54.12°= 54°7'12".
(2) (20)°=20°+( )°=20°+ x60'= 20°+30'= 20°30'.
8.解析(1)43°30'36"=43°+()°+()'= 43°+0.5°+0.6'=43.5°+()°=43.5°+0.01°= 43.51°.
(2)先把12"化为分,()'×12=0.2',再把25.2'化为度,()°×25.2= 0.42°,所以65°25'12"=65.42°.
能力提升全练
1.答案5
解析:以O为顶点的锐角有∠AOD, ∠AOC, ∠DOC, ∠DOB,∠COB,共5个.
2.答案(1) 34; 22;12(2)36.295(3)62;7;30(4)41.31
3.解析(1)(2)(3)如图所示.

4.解析时针每小时走30°,每分钟走0.5°,分针每分钟走6°.
(1)90.
(2)1点20分时,时针与分针所夹的角是20×6°--0.5°×20= 80°.
(3)易知分针转了6°x(35-15)=120°,时针转了0.5°×(35-15)= 10°.
三年模拟全练
一、选择题
1.C
解析:时针转过的角度是(2+)×30°= 75°,分钟转过的角度是30x6°=180°,所以钟表在2点半时,其时针和分针所成的角是180°-75°=105°,故选C.
二、填空题
2.答案56.8;4°18'
解析:因为48'=0.8°,所以56°48'= 56.8°;因为0.3°=0.3×60'= 18'.所以4.3°=4°18'.
五年中考全练
一、选择题
1.C
解析:量角器的圆心一定要与点O重合,故选C.
二、填空题
2.答案87
解析 1.45°=60'+0.45×60'= 87'.
核心素养全练
1.解析 题图中的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,共3+2+1=6个角,故有公共端点的4条不同射线可组成6个角.当有10条这样的射线时,可组成9+8+7+6+5+4+3+2+1= 45个角.当有n条这样的射线时,可组成(n-1)+(n-2)+…+3+2+1=个角.
2.解析(1)晚上9时30分,时针与分针之问有(45+×5)-30= 17.5个小格,中间有17个分钟刻度,而每一个分钟刻度处装有一只小彩灯,连同分针处的小彩灯,晚上9时30分,时针与分针所火的角内有18只小彩灯.
(2)晚上9时35分20秒,时针与分针之间有[45+(35+)÷60x5] -35=12个小格,中间有12个分钟刻度,而每一个分钟刻度处装有一只小彩灯,所以晚上9时35分20秒时,时针与分针所央的角内有12只小彩灯.