人教A版数学必修3 3.1.2 概率的意义(课件40张PPT+练习)

文档属性

名称 人教A版数学必修3 3.1.2 概率的意义(课件40张PPT+练习)
格式 zip
文件大小 2.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-11-15 15:49:25

文档简介

第三章 3.1 3.1.2
一、选择题
1.某事件发生的概率是万分之一,说明了( A )
A.概率太小,该事件几乎不可能发生
B.10 000次中一定发生1次
C.10 000人中,9 999人说不发生,1人说发生
D.10 000次中不可能发生10 000次
[解析] 万分之一的概率很小,属于小概率事件,发生的可能性很小,故选A.其他的说法均是错误的.
2.手表实际上是个转盘,一天二十四小时,分针指到哪个数字的概率最大( D )
A.12       B.6
C.1   D.12个数字概率相等
[解析] 手表设计者设计的转盘是等分的,即分针指到1,2,3,…,12中每个数字的机会都一样,故选D.
3.甲、乙两人做游戏,下列游戏中不公平的是( B )
A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜
B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜
C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜
D.甲、乙两人各写一个数字1或2,如果两人写的数字相同则甲获胜,否则乙获胜
[解析] B中,同时抛掷两枚硬币,恰有一枚正面向上的概率为,两枚都正面向上的概率为,所以对乙不公平.
4.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( C )
A.一定出现“6点朝上”
B.出现“6点朝上”的概率大于
C.出现“6点朝上”的概率等于
D.无法预测“6点朝上”的概率
[解析] 随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以它出现哪一个面朝上的可能性都是相等的.
5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而聊城市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理( B )
A.甲公司    B.乙公司
C.甲与乙公司   D.以上都对
[解析] 根据极大似然法可知认为肇事车来自乙公司较合理.
6.为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人员抛掷一枚硬币,如果出现正面朝上,就回答问题(1);否则就回答问题(2).被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查者本人知道回答了哪个问题,所以都会如实回答.如果被调查者中的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是( B )
A.30   B.60
C.120   D.150
[解析] 因为掷硬币时,出现正面朝上和反面朝上的概率都是,被调查者中大约有300人回答了问题(1),有300人回答了问题(2);又因为学号为奇数或偶数的概率也是,故在回答问题(1)的300人中,大约有150人回答“是”,在回答问题(2)的300人中,大约有180-150=30(人)回答了“是”,即有的被调查者闯红灯,则被调查者中的600人中大约有60人闯过红灯.故选B.
二、填空题
7.利用简单随机抽样的方法抽取某校200名学生,其中戴眼镜的学生有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率约是__0.615__.
[解析] 由概率的定义可得,在这个学校中,随机调查一名学生,他戴眼镜的概率约为=0.615.
8.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛两枚同样的一元硬币,如果落地后一正一反,我就去;如果落地后两面一样,你就去!”你认为这个游戏是__公平__的.(“公平”或“不公平”)
[解析] 向空中同时抛两枚同样的一元硬币,落地后的结果有“正正”“反正”“正反”“反反”四种情况,其中“一正一反”和“两面一样”的概率都是,因此游戏是公平的.
三、解答题
9.元旦就要到了,某校将举行庆祝活动,每班派1人主持节目.高一(2)班的小明、小华和小利实力相当,又都争着要去,班主任决定用抽签的方式决定.机灵的小强给小华出主意,要小华先抽,说先抽的机会大.你是怎样认为的?说说看.
[解析] 其实抽签不必分先后,先抽后抽,中签的机会是一样的.我们取三张卡片,上面标上1,2,3,抽到1就表示中签,设抽签的次序为甲、乙、丙,则可以把情况填入下表:
  情况
人名  







1
1
2
2
3
3

2
3
1
3
1
2

3
2
3
1
2
1
从上表可以看出:甲、乙、丙依次抽签,一共有六种情况,第一、二两种情况,甲中签;第三、五两种情况,乙中签;第四、六两种情况,丙中签.甲、乙、丙中签的可能性都是相同的,即甲、乙、丙的机会是一样的,先抽后抽,机会是均等的,不必争先恐后.
10.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,应该买这一号码,你认为他们的说法对吗?
[解析] 体育彩票中标有36个号码的36个球大小、重量是一致的,严格地说,为了保证公平,每次用的36个球,应该只允许用一次,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,上述两种说法都是错的.
课件40张PPT。第三章概率3.1 随机事件的概率3.1.2 概率的意义自主预习学案某地“36选7”电脑福利彩票的投注方法是,从36个号码中选择7个号码为1注,每注金额为人民币2元.中奖号码由6个基本号码和1个特别号码组成,投注者根据当期彩票上的投注号码与中奖号码相符的个数多少(顺序不限),确定相应的中奖资格.
请计算:如果买一注彩票,能够中奖的概率(可能性)有多大?能够中一等奖的概率有多大?1.对概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有__________,认识了这种随机性中的__________,就能比较准确地预测随机事件发生的__________.
2.游戏的公平性
(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为__________,所以这个规则是________的.
(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是________的这一重要原则.规律性 规律性 可能性 0.5 公平 公平 3.决策中的概率思想
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“____________________________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.
4.天气预报的概率解释
天气预报的“降水”是一个____________,“降水概率为90%”指明了“降水”这个随机事件发生的________为90%,在一次试验中,概率为90%的事件也______________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是________的.使得样本出现的可能性最大 随机事件 概率 可能不出现 错误 5.孟德尔与遗传机理中的统计规律
孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种________.
以豌豆为例说明孟德尔发现的杂交规律,假设纯黄为显性,记为YY,纯绿为隐性,记为yy:
第二代中YY,yy出现的概率都是______,Yy出现的概率为______,所以黄色豌豆(YY,Yy)︰绿色豌豆(yy)≈__________.统计 3︰1 1.事件A发生的概率接近于0,则(  )
A.事件A不可能发生
B.事件A也可能发生
C.事件A一定发生
D.事件A发生的可能性很大
[解析] 不可能事件的概率为0,必然事件的概率为1,随机事件的概率的取值范围为(0,1),故选B.B  [解析] 概率与试验的次数无关,在此题中与所买彩票的张数的多少无关,它是客观存在的,可能会出现只买一张就中奖,也可能买1 000张也不中奖.D  3.在天气预报中,有“降水概率预报”,例如,预报“明天降水概率为78%”,这是指(  )
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%
C.气象台的专家中,有78%的专家认为会降水,另外22%的专家认为不降水
D.明天该地区约有78%的时间降水,其他时间不降水
[解析] 本题主要考查概率的意义.“明天降水概率为78%”是指明天该地区降水的可能性大小为78%,故选B.B  1 000 5.现共有两个卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的办法分配玩具,拿一个飞镖射向如图所示的圆盘,若射中区域的数字为1,2,3,则玩具给展展和宁宁,若射中区域的数字为4,5,6,则玩具给宁宁和凯凯,若射中区域的数字为7,8,则玩具给展展和凯凯.试问这个游戏规则公平吗?互动探究学案 (1)“今天九华山降雨的概率是80%,黄山降雨的概率是20%”,下面说法不正确的是(  )
A.九华山今天可能没有降雨,黄山今天可能降雨
B.九华山和黄山今天都可能没有降雨
C.九华山今天一定降雨,而黄山一定不降雨
D.九华山今天降雨的可能性比黄山大命题方向1 ?正确理解概率的意义C  典例 1 (2)已知某产品的次品率为1%,有下列四种说法:
①从产品中任取100件,其中一定有1件次品;
②从产品中依次抽取100件产品,若前面99件均为合格品,则第100件一定为次品;
③从产品中任意抽取100件,则这100件产品不可能全为合格品;
④从产品中任取一件,为次品的可能性为1%.
其中正确的是______.
[思路分析] 应用概率的意义进行判断.④ [解析] (1)随机事件的概率是指随机事件发生的可能性的大小,大概率事件未必一定发生,同样小概率事件未必不发生,故C不正确.
(2)因为次品率即出现次品的概率,次品率为1%是指产品为次品的可能性为1%,所以从产品中任意抽取100件,其中可能有1件次品,而不是一定有1件次品,①不正确;随机事件每次发生的概率是相等的,并不受前后试验的影响,故第100件产品为次品的可能性仍为1%,②不正确;抽100件产品相当于做100次试验.因为每次试验结果都是随机的,也就是每次抽取可能抽到合格品也可能抽到次品.事实上,这100件产品有101种可能,即可能是100件合格品,也可能是99件合格品1件次品,或是98件合格品2件次品,……或是1件合格品99件次品,或是100件次品,故③不正确.只有④正确.『规律总结』 利用概率的意义解题的三个关注点
(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.
(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.
(3)正确理解概率的意义,要清楚概率与频率的区别与联系,对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.〔跟踪练习1〕 某班有50名同学,其中男女各25名,今有这个班的一个学生在街上碰到一个同班同学,则下列结论正确的是(  )
A.碰到异性同学比碰到同性同学的概率大
B.碰到同性同学比碰到异性同学的概率大
C.碰到同性同学和异性同学的概率相等
D.碰到同性同学和异性同学的概率随机变化A   某校高二年级(1)(2)班准备联合举行晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?命题方向2 ?游戏公平性的判断典例 2 [思路分析] 1.列举出所有可能情况是什么?
2.复合条件是什么?
3.如何判断是否公平?
[解析] 该方案是公平的,理由如下:
各种情况如下表所示:『规律总结』 游戏规则公平的判断标准:
(1)在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说是否公平只要看获胜的概率是否相等.
(2)例如:体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才是公平的;每个人购买彩票中奖的概率应该是相等的,这样才是公平的;抽签决定某项事务时,任何一支签被抽到的概率也是相等的,这样才是公平的;等等.〔跟踪练习2〕 有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
A.猜“是奇数”或“是偶数”;
B.猜“是4的整数倍数”或“不是4的整数倍数”;
C.猜“是大于4的数”或“不是大于4的数”.
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?
(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.[解析] (1)A方案中,“是奇数”和“是偶数”的概率都为0.5;B方案中,“是4的整数倍的数”的概率为0.2,“不是4的整数倍的数”的概率为0.8;C方案中,“是大于4的数”的概率为0.6,“不是大于4的数”的概率为0.4.故选择B方案,猜“不是4的整数倍的数”获胜的概率最大.
(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.
(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性. 下面有三种游戏规则:袋子中分别装有大小相同的球,从袋中取球,对试验所有发生可能情况列举不全而致误 典例 3 问其中不公平的游戏是(  )
A.游戏1       B.游戏1和游戏3     
C.游戏2      D.游戏3[辨析] 错误的根本原因是对试验发生的所有可能情况列举不全,从而导致结果错误.如果我们面临的是从多个可选答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.决策中的概率思想  为满足同学们体育锻炼的需要,学校购买了100个篮球.但由于采购人员把关不严,发现有30个篮球有质量问题.体育器材室的管理老师把68个质量合格的篮球和2个质量不合格的篮球存放在左边的篮球架上,2个质量合格的篮球和28个质量不合格的篮球存放在右边的篮球架上.体育课上,体育老师派张强和王苏去器材室拿两个篮球.回来后老师发现张强拿回来的篮球是质量合格的,而王苏拿回来的篮球是质量不合格的.问王苏是从哪个篮球架上拿的篮球?张强呢?
[思路分析] 根据题意与极大似然法,做出判断的依据是“样本出现的可能性最大”.典例 4 『规律总结』 (1)如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.极大似然法是统计中重要的思想方法之一.
(2)在一次试验中,概率大的事件比概率小的事件出现的可能性更大,小概率(接近于0)事件很少发生,而大概率(接近于1)事件经常发生.知道随机事件发生的概率的大小有利于我们做出正确的决策,以降低风险.1.成语“千载难逢”意思是说某事(  )
A.一千年中只能发生一次
B.一千年中一次也不能发生
C.发生的概率很小
D.为不可能事件,根本不会发生
[解析] 根据概率的意义可知选项A、B、D都不正确.C  B  D  4.某种病治愈的概率是30%,那么,现有10人得这种病,在治疗中前7人没有治愈,后3人一定能治愈吗?
[解析] 如果把治疗一个病人作为一次试验,治愈率是0.3指的是随着试验次数的增加,即随着治疗人数的增加,大约有30%的人能够治愈.对于一次试验来说,其结果是随机的,因此对后3人来说,其结果仍然是随机的,有可能治愈,也有可能不能治愈,所以后3人不一定能治愈.课时作业学案