第三章 3.2 3.2.1
A级 基础巩固
一、选择题
1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( B )
A. B.
C. D.
[解析] 设5名学生分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲、乙),(甲、丙),(甲、丁),(甲、戊),(乙、丙),(乙、丁),(乙,戊),(丙、丁),(丙、戊),(丁,戊),共10种情况,其中甲被选中的情况有(甲,乙),(甲、丙),(甲、丁),(甲、戊),共4种,所以甲被选中的概率为=.
2.从1、2、3、4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( B )
A. B.
C. D.
[解析] 从1、2、3、4中任取2个不同的数有以下六种情况:{1,2}、{1,3}、{1,4}、{2,3}、{2,4}、{3,4},满足取出的2个数之差的绝对值为2的有{1,3}、{2,4},故所求概率是=.
3.为美化环境,从红、黄、白、紫4种颜色的花中任选两种花种在一个花坛中,余下的两种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C )
A. B.
C. D.
[解析]__从红、黄、白、紫4种颜色的花中任选两种花种在一个花坛中,余下的两种花种在另一个花坛中,所有不同的种法有(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共6种方法,其中,红色和紫色的花不在同一花坛的种法有(红,黄),(红,白),(黄,紫),(白,紫)4种方法,所以所求的概率为=.
4.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( D )
A. B.
C. D.
[解析] 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:
基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,
∴所求概率P==.
二、填空题
5.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为____.
[解析] 设数学书为A、B,语文书为C,则不同的排法共有(A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A)共6种排列方法,其中2本数学书相邻的情况有4种情况,故所求概率为P==.
6.(2018·江苏,6)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为____.
[解析] 设2名男生为a,b,3名女生为A,B,C,从中选出2人的情况有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10种,而都是女生的情况有(A,B),(A,C),(B,C),共3种,故所求概率为.
三、解答题
7.甲、乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.
(1)求甲组同学答对题目个数的平均数和方差;
(2)分别从甲、乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.
[解析] 由题图可得,甲组同学答对题目的个数分别为:8,9,11,12,
∴甲==10,
s=×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=.
(2)由题图可得,乙组同学答对题目的个数分别为:8,8,9,11.分别从甲、乙两组中各抽取一名同学,设“这两名同学答对题目个数之和为20”为事件A,以(x,y)记录甲、乙两组同学答对题目的个数,基本事件有:(8,8),(8,8),(8,9),(8,11),(9,8),(9,8),(9,9),(9,11),(11,8),(11,8),(11,9),(11,11),(12,8),(12,8),(12,9),(12,11),共16个.
事件A包含的基本事件有:(9,11),(11,9),(12,8),(12,8),共4个.故P(A)==.
8.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
[解析] (1)抽样比为=,所以应从甲、乙、丙这三个协会中抽取的运动员人数分别为3,1,2.
(2)①从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.
②编号为A5,A6的两名运动员至少有一人被抽到的结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种,所以事件A发生的概率P(A)==.
B级 素养提升
一、选择题
1.从集合{a,b,c,d,e}的所有子集中任取一个,这个集合恰好是集合{a,b,c}的子集的概率是( C )
A.1 B.
C. D.
[解析] 集合{a,b,c,d,e}的所有子集有25=32,集合{a,b,c}的所有子集有23=8,故所求概率为=.
2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )
A. B.
C. D.
[解析] 记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.
记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个,因此P(A)==.
二、填空题
3.从2、3、8、9中任取两个不同的数字,分别记为a、b,则logab为整数的概率是____.
[解析] 从2,3,8,9中任取两个不同的数字,(a,b)的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log28=3,log39=2为整数,所以logab为整数的概率为.
4.从集合A={2,3}中随机取一个元素m,从集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为____.
[解析] 点P(m,n)的所有结果有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,每种结果等可能出现,属于古典概型,记“点P在圆x2+y2=9内部”为事件A即m2+n2<9,则A包含的结果有(2,1),(2,2)共2种
∴P(A)==.
三、解答题
5.(2019·山西大同灵丘县高一期末测试)2018年,世界政治风云存在着诸多变数,中东成为世界的焦点.现有8名维和军人,其中维和军人A1,A2,A3通晓英语,B1,B2,B3通晓俄语,C1、C2通晓汉语,2018年10月1日,国际社会从中选出通晓英语、俄国和汉语的维和军人各1名,组成一个中东战地维和领导小组.
(1)求A2被选中的概率;
(2)求B1和C1至少有一个人被选中的概率.
[解析] (1)从8人中选出通晓英语、俄语和汉语维和军人各1名的可能结果为(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18种情况.……用M表示事件“A2被选中”,事件M所包含的基本事件有(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2)共6个,∴P(M)==.
(2)用N表示事件“B1和C1至少有1个人被选中”,根据(1)求解知,B1和C1至少有1个人被选中有12种情况,∴B和C至少有1个人被选中的概率P(N)==.
6.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y,
(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;
(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.
[解析] (1)因x,y都可取1,2,3,4,5,6,故以(x,y)为坐标的点共有36个.
记点(x,y)落在直线x+y=7上为事件A,事件A包含的点有:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)6个,所以事件A的概率P(A)==.
(2)记x+y≥10为事件B,x+y≤4为事件C,用数对(x,y)表示x,y的取值.则事件B包含(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)共6个数对;
事件C包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个数对.
由(1)知基本事件总数为36个,所以P(B)==,P(C)==,
所以小王、小李获胜的可能性相等,游戏规则是公平的.
课件51张PPT。第三章概率3.2 古典概型3.2.1 古典概型自主预习学案我们一次向上抛掷红、黄、绿三颗骰子,可能出现多少种不同的结果呢?
1.基本事件
(1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的________事件称为该次试验的基本事件,试验中其他的事件(除不可能事件)都可以用____________来表示.
(2)特点:一是任何两个基本事件都是__________;二是任何事件(除不可能事件)都可以表示成基本事件的______.随机 基本事件 互斥的 和 2.古典概型
(1)定义:如果一个概率模型满足:
①试验中所有可能出现的基本事件只有________个;
②每个基本事件出现的可能性________.
那么这样的概率模型称为古典概率模型,简称古典概型.
(2)计算公式:对于古典概型,任何事件A的概率为
P(A)=______________________.有限 相等 1.抛掷一枚骰子,下列不是基本事件的是( )
A.向上的点数是奇数
B.向上的点数是3
C.向上的点数是4
D.向上的点数是6
[解析] 向上的点数是奇数包含三个基本事件:向上的点数是1,向上的点数是3,向上的点数是5,则A项不是基本事件,B、C、D项均是基本事件.A D B 4.从1,2,3,6这4个数中一次随机取2个数,则所取2个数乘积为6的基本事件为__________________.
[解析] ∵所取两个数乘积为6,∴满足条件的基本事件有(2,3),(1,6).(2,3),(1,6) 5.在平面直角坐标系中,从五个点A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)中任取三个,这三点能构成三角形的概率是______.6.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率;
(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.互动探究学案 将一枚骰子先后抛掷两次,则:
(1)一共有几个基本事件?
(2)“出现的点数之和大于8”包含几个基本事件?命题方向1 ?列基本事件的常用法典例 1 [解析] 解法一(列举法):
(1)用(x,y)表示结果,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,则试验的所有结果为:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).
共36个基本事件.
(2)“现出的点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).解法二(列表法):
如下图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.
(1)由图知,基本事件总数为36.
(2)总数之和大于8包含10个基本事件(已用虚线圈出).解法三(树形图法):
一枚骰子先后抛掷两次的所有可能结果用树形图表示.如下图所示:(1)由图知,共36个基本事件.
(2)点数之和大于8包含10个基本事件(已用“√”标出).『规律总结』 列基本事件的三种方法及注意点
(1)列举法:一一列出所有基本事件的结果,一般适用于较简单的问题.
(2)列表法:一般适用于较简单的试验方法.
(3)树状图法:一般适用于较复杂问题中基本事件个数的探求.(注意点:要分清“有序”还是“无序”.)〔跟踪练习1〕 袋中有红、白、黄、黑四种颜色但大小相同的四个小球.
(1)从中任取一球;
(2)从中任取两球;
(3)先后各取一球.
写出上面试验的基本事件,并指出基本事件的总数.[解析] (1)这个试验的基本事件为{红},{白},{黄},{黑},基本事件的总数是4.
(2)一次取两球,如记{红,白}代表一次取出红球、白球两个球,则本试验的基本事件为{红,白},{红,黄},{红,黑},{白,黄},{白,黑},{黄,黑},基本事件的总数是6.
(3)先后取两球,如记{红,白}代表先取一红球,后取一白球.因此本试验的基本事件为{红,白},{白,红},{红,黄},{黄,红},{红,黑},{黑,红},{白,黄},{黄,白},{白,黑},{黑,白},{黄,黑},{黑,黄},基本事件的总数是12. 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.
[思路分析] (1)要求2名教师性别相同的概率,应先写出所有可能的结果,可以采用列举法求解.
(2)要求选出的2名教师来自同一所学校的概率,应先求出2名教师来自同一所学校的基本事件.命题方向2 ?古典概型的判断典例 2
〔跟踪练习2〕 (2019·天津,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率. 某校从A、B、C、D四名同学中随机选派两人分别去参观甲、乙两个工厂,求学生A被选中的概率.对“有序”与“无序”判断不准 典例 3 [辨析] 错解中忽视了从A、B、C、D四名学生中随机选两人分别去参观甲、乙两个工厂是有顺序的.概率与统计相结合,是历年新课标数学高考试题的一个亮点,其中所涉及的统计知识是基础知识,所涉及的概率是古典概型,虽然是综合题,但是难度不大,利用相关知识求解即可.概率与统计的综合问题 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60)受访职工中随机抽取2人,求此2人评分都在[40,50)的概率.
[思路分析] (1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80,即评分在[80,100],再根据频率分布直方图求出频率,估计概率;(3)求出评分在[50,60)的受访职工人数和评分在[40,50)的受访职工人数,再用列举法列出所有可能,利用古典概型公式解答.典例 4
[解析] (1)由题意,得(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006.
(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4.故该企业职工对该部门评分不低于80的概率的估计值为0.4.1.下列试验中是古典概型的是( )
A.在适宜的条件下,种下一粒大豆,观察它是否发芽
B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球
C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的
D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命中0环B
[解析] 根据古典概型的特点,A项中,种子发芽与否的概率不相等;B项中,摸到每个球的概率相等,且只有4球;C项中,点落在圆内的结果数量是无限的;D项中,射击命中环数的概率也不一定相等.故只有B项是古典概型.C A 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是______.5.连掷骰子两次(骰子六个面上分别标以数字1、2、3、4、5、6)得到的点数分别记为a和b,则使直线3x-4y=0与圆(x-a)2+(y-b2)=4 相切的概率为______.6.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.课时作业学案