北师大版七年级数学上册《第5章 一元一次方程》单元测试题2019学年(1)
一.选择题(共12小题)
1.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( )
A.2 B.3 C.4 D.5
2.下列等式变形正确的是( )
A.若﹣3x=5,则x=﹣
B.若,则2x+3(x﹣1)=1
C.若5x﹣6=2x+8,则5x+2x=8+6
D.若3(x+1)﹣2x=1,则3x+3﹣2x=1
3.方程3x+6=2x﹣8移项后,正确的是( )
A.3x+2x=6﹣8 B.3x﹣2x=﹣8+6 C.3x﹣2x=﹣6﹣8 D.3x﹣2x=8﹣6
4.若x=1是方程2x+m﹣6=0的解,则m的值是( )
A.﹣4 B.4 C.﹣8 D.8
5.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )
A.3场 B.4场 C.5场 D.6场
6.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )
A.22元 B.23元 C.24元 D.26元
7.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是( )
A.2 B.2或2.25 C.2.5 D.2或2.5
8.篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是( )
A.2 B.3 C.4 D.5
9.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了( )
A.17道 B.18道 C.19道 D.20道
10.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )
A.2 B.3 C.4 D.5
11.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了( )折.
A.5 B.5.5 C.7 D.7.5
12.小明在公路上行走,速度是6千米/时,一辆车身长20米的汽车从背后驶来,并从小明身旁驶过,驶过小明身旁的时间是1.5秒,则汽车行驶的速度是( )
A.54千米/时 B.60千米/时 C.72千米/时 D.66千米/时
二.填空题(共6小题)
13.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.
14.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为 元.
15.如果方程ax|a+1|+3=0是关于x的一元一次方程,则a的值为 .
16.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为 .
17.某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过 小时后,客车与轿车相距30千米.
18.某校七年级学生有a人,已知七、八、九年级学生人数比为2:3:3,则该校学生共有 人.
三.解答题(共7小题)
19.解下列方程:
(1)8x=﹣2(x+4)
(2)
20.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)
甲 乙
进价(元/件) 22 30
售价(元/件) 29 40
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?
21.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.
(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?
(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?
(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?
22.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.
23.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?
24.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?
25.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.
(1)求钢笔和毛笔的单价各为多少元?
(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.
②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为 元.
北师大版七年级数学上册《第5章 一元一次方程》单元测试题2019学年(1)
参考答案与试题解析
一.选择题(共12小题)
1.【解答】解:①是分式方程,故①错误;
②0.3x=1,即0.3x﹣1=0,符合一元一次方程的定义.故②正确;
③,即9x+2=0,符合一元一次方程的定义.故③正确;
④x2﹣4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;
⑤x=6,即x﹣6=0,符合一元一次方程的定义.故⑤正确;
⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.
综上所述,一元一次方程的个数是3个.
故选:B.
2.【解答】解:A、若﹣3x=5,则x=﹣,错误;
B、若,则2x+3(x﹣1)=6,错误;
C、若5x﹣6=2x+8,则5x﹣2x=8+6,错误;
D、若3(x+1)﹣2x=1,则3x+3﹣2x=1,正确;
故选:D.
3.【解答】解:原方程移项得:3x﹣2x=﹣6﹣8.
故选:C.
4.【解答】解:根据题意,得
2×1+m﹣6=0,即﹣4+m=0,
解得m=4.
故选:B.
5.【解答】解:设共胜了x场,则平了(14﹣5﹣x)场,
由题意得:3x+(14﹣5﹣x)=19,
解得:x=5,即这个队胜了5场.
故选:C.
6.【解答】解:设洗发水的原价为x元,由题意得:
0.8x=19.2,
解得:x=24.
故选:C.
7.【解答】解:设经过t小时两车相距50千米,根据题意,得
120t+80t=450﹣50,或120t+80t=450+50,
解得t=2,或t=2.5.
答:经过2小时或2.5小时相距50千米.
故选:D.
8.【解答】解:设该队获胜x场,则负了(6﹣x)场,
根据题意得:3x+(6﹣x)=12,
解得:x=3.
答:该队获胜3场.
故选:B.
9.【解答】方法一:
解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,
解得x=19.
方法二:
解:由题意可知,做错一道题实际扣除5分,
某同学得了70分,则其扣了100﹣70=30分,
∴某同学共做错了30÷5=6道,
∴某同学共做对了25﹣6=19道,
故选:C.
10.【解答】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,
根据题意得:3x=2(10﹣x),
解得:x=4.
答:小强胜了4盘.
故选:C.
11.【解答】解:设一件商品原价为a元,买2件商品共打了x折,根据题意可得:
a+0.5a=2a?,
解得:x=7.5,
即相当于这2件商品共打了7.5折.
故选:D.
12.【解答】解:设汽车行驶的速度是x千米/时,则
x﹣6×=
解得:x=54
答:汽车行驶的速度是54x千米/时.
故选:A.
二.填空题(共6小题)
13.【解答】解:设制作大花瓶的x人,则制作小饰品的有(20﹣x)人,由题意得:
12x×5=10(20﹣x)×2,
解得:x=5,
20﹣5=15(人).
答:要安排5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.
故答案是:5.
14.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),
由题意可得:x×(1+20%)×90%=x+16,
解得x=200,
即这种商品的成本价是200元.
故答案为:200.
15.【解答】解:∵方程ax|a+1|+3=0是关于x的一元一次方程,
∴|a+1|=1且a≠0,
解得a=﹣2.
故答案是:﹣2.
16.【解答】解:设正方形边长为xcm,由题意得:
4x=5(x﹣4),
故答案为:4x=5(x﹣4).
17.【解答】解:①设经过x小时后,客车与轿车第一次相距30千米,由题意得:
80x+100x+30=390,
解得:x=2,
②设经过x小时后,客车与轿车第二次相距30千米,由题意得:
80x+100x﹣30=390,
解得:x=,
答:经过2小时或小时客车与轿车相距30千米.
故答案为:2或.
18.【解答】解:设该校共有x人.
?x=a
x=
x=4a
故答案为4a.
三.解答题(共7小题)
19.【解答】解:(1)去括号得:8x=﹣2x﹣8,
移项合并得:10x=﹣8,
解得:x=﹣0.8;
(2)去分母得:7﹣14x=9x+3﹣42,
移项合并得:﹣23x=﹣46,
解得:x=2.
20.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,
根据题意得:22x+30(x+15)=6000,
解得:x=150,
∴x+15=90.
答:该超市第一次购进甲种商品150件、乙种商品90件.
(2)(29﹣22)×150+(40﹣30)×90=1950(元).
答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.
(3)设第二次乙种商品是按原价打y折销售,
根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,
解得:y=8.5.
答:第二次乙商品是按原价打8.5折销售.
21.【解答】(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.
根据题意,得300+0.8x=x,
解得x=1500,
所以,当顾客消费少于1500元时不买卡合算;
当顾客消费等于1500元时买卡与不买卡花钱相等;
当顾客消费大于1500元时买卡合算;
(2)小张买卡合算,
3500﹣(300+3500×0.8)=400,
所以,小张能节省400元钱;
(3)设进价为y元,根据题意,得
(300+3500×0.8)﹣y=25%y,
解得 y=2480
答:这台冰箱的进价是2480元.
22.【解答】解:方程3x+2=﹣4,
解得:x=﹣2,
把x=﹣2代入第一个方程得:﹣6=3m﹣1,
解得:m=﹣.
23.【解答】解:设乙还需做x天.
由题意得:++=1,
解之得:x=3.
答:乙还需做3天.
24.【解答】解:设第一次相距50千米时,经过了x小时.
(120+80)x=450﹣50
x=2.
设第二次相距50千米时,经过了y小时.
(120+80)y=450+50
y=2.5
经过2小时或2.5小时相距50千米.
25.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,
由题意得:30x+20(x+6)=1070,
解得:x=19,
则x+6=25,
答:钢笔的单价为19元,毛笔的单价为25元;
(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,
根据题意得:19y+25(60﹣y)=1322,
解得:y=,
不合题意,即张老师肯定搞错了;
②设单价为19元的钢笔z支,签字笔的单价为a元,
根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,
由a,z都是整数,且178+a应被6整除,
经验算当a=2时,6z=180,即z=30,符合题意;
当a=8时,6z=186,即z=31,符合题意,
则签字笔的单价为2元或8元.
故答案为:2或8.