人教版九年级数学下册教案27.2.3 相似三角形的应用举例

文档属性

名称 人教版九年级数学下册教案27.2.3 相似三角形的应用举例
格式 zip
文件大小 558.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-11-14 18:22:49

图片预览

文档简介

27.2.3 相似三角形的应用举例
1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点)
2.灵活运用三角形相似的知识解决实际问题.(难点)
一、情境导入
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?
二、合作探究
探究点:相似三角形的应用
【类型一】 利用影子的长度测量物体的高度
如图,某一时刻一根2m长的竹竿EF的影长GE为1.2m,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6m,求树AB的长.
解析:先利用△BDC∽△FGE得到=,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.
解:如图,CD=3.6m,∵△BDC∽△FGE,∴=,即=,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.
方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.
【类型二】 利用镜子的反射测量物体的高度
小红用下面的方法来测量学校教学大楼AB的高度.如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20m.当她与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6m,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).
解析:根据物理知识得到∠BEA=∠DEC,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.
解:如图,∵根据光的反射定律知∠BEA=∠DEC,∵∠BAE=∠DCE=90°,∴△BAE∽△DCE,∴=.∵CE=2.5m,DC=1.6m,∴=,∴AB=12.8,∴大楼AB的高度为12.8m.
方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.
【类型三】 利用标杆测量物体的高度
如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.
解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.
解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.
  方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
【类型四】 利用相似三角形的性质设计方案测量高度
星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.
解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.
解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.
理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.根据=,即可算出AB的高.
方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.
三、板书设计
1.利用相似三角形测量物体的高度;
2.利用相似三角形测量河的宽度;
3.设计方案测量物体高度.
通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.