第五章图形与变换第32节轴对称与中心对称■考点1.图形的轴对称
(1)定义:
①轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说 ,这条直线叫做 ,两个图形中重合的点叫做 ,重合的线段叫做 .
②轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做 ,这条直线叫做 .
(2)性质:
①成轴对称的两个图形,
②如果两个图形关于某条直线对称.那么连接对应点的线段 垂直平分,
③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在 .
■考点2.图形的中心对称
(1)定义
①中心对称:平面内一个图形绕着某个点旋转180。后能和另一个图形重合,那么这两个图形 ,这个点叫做它的 ,旋转前后的点叫做 .
②中心对称图形:一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做 ,这个点叫做它的 .
(2)性质:
①关于某点成中心对称的两个图形 .
②成中心对称的两个图形和中心对称图形的对应点连线都通过对称中心,并且被对称中心 __
■考点3.关于原点对称的点的坐标特点
(1)两个点关于原点对称时,它们的坐标符号,即点P(x,y)关于原点O的对称点是P′ .
(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.
注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.
■考点1.图形的轴对称
◇典例:
1.(2019年北京市)下列倡导节约的图案中,是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形
【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
解:A.不是轴对称图形,故此选项错误,
B、不是轴对称图形,故此选项错误,
C、是轴对称图形,故此选项正确,
D、不是轴对称图形,故此选项错误.
故选:C.
【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
【考点】轴对称﹣最短路线问题,菱形的性质
【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.
解:如图
,
作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又∵N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形ABNM′是平行四边形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值为1,
故选:B.
【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.
◆变式训练
1.(2019年天津市)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
2.(2018年广西贵港市)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A.6 B.3 C.2 D.4.5
■考点2.图形的中心对称
◇典例
1.(2019年广西玉林市)菱形不具备的性质是( )
A.是轴对称图形 B.是中心对称图形
C.对角线互相垂直 D.对角线一定相等
【考点】菱形的性质,轴对称图形,中心对称图形
【分析】根据菱形的性质对各个选项进行分析,从而得到答案.
解:A.是轴对称图形,故正确,
B、是中心对称图形,故正确,
C、对角线互相垂直,故正确,
D、对角线不一定相等,故不正确,
故选:D.
【点评】本题考查了菱形的性质,熟练掌握菱形的性质是解题的关键.
2.(2019年四川省绵阳市)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′= .
【考点】全等三角形的判定与性质,等腰直角三角形的性质,旋转的性质
【分析】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.
解:如图,连接CE′,
∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,
∴AB=BC=2,BD=BE=2,
∵将△BDE绕点B逆时针方向旋转后得△BD′E′,
∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,
∴∠ABD′=∠CBE′,
∴△ABD′≌△CBE′(SAS),
∴∠D′=∠CE′B=45°,
过B作BH⊥CE′于H,
在Rt△BHE′中,BH=E′H=BE′=,
在Rt△BCH中,CH==,
∴CE′=+,
故答案为:.
【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.
◆变式训练
1.(2019年江苏省盐城市)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.(2019年广西贺州市)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为 .
■考点3.关于原点对称的点的坐标特点
◇典例
(2019年湖南省常德市)点(﹣1,2)关于原点的对称点坐标是( )
A.(﹣1,﹣2) B.(1,﹣2) C.(1,2) D.(2,﹣1)
【考点】关于原点对称的点的坐标
【分析】坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.
解:根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).
故选:B.
【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
◆变式训练
(2019年山东省滨州市(a卷))已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
1.(2019年广东省深圳市)下列图形是轴对称图形的是( )
A. B. C. D.
2.(2019年广西百色市)下列图形,既是轴对称图形又是中心对称图形的是( )
A.正三角形 B.正五边形
C.等腰直角三角形 D.矩形
3.(2019年吉林省)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )
A.30° B.90° C.120° D.180°
4.(2019年湖北省黄石市)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )
A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)
5.(2019年四川省宜宾市)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE绕着点A顺时针旋转到与△ABF重合,则EF=( )
A. B. C.5 D.2
6.(2019年广西贵港市)若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是( )
A.1 B.3 C.5 D.7
7.(2019年山东省烟台市)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是 .
8.(2019年四川省泸州市)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b的值是 .
9.(2019年山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 .
10.(2019年黑龙江省伊春市)如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.
选择题
1.(2019年广西柳州市)下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )
A.当心吊物安全 B.当心触电安全
C.当心滑跌安全 D.注意安全
2.(2019年湖南省株洲市)对于任意的矩形,下列说法一定正确的是( )
A.对角线垂直且相等
B.四边都互相垂直
C.四个角都相等
D.是轴对称图形,但不是中心对称图形
3.(2019年浙江省杭州市)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
4.(2019年广西贵港市)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是( )
A.S1+S2=CP2 B.AF=2FD C.CD=4PD D.cos∠HCD=
5.(2019年辽宁省辽阳市)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是( )
A.8 B.8 C.8 D.10
6.(2019年安徽省)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是( )
A.0 B.4 C.6 D.8
7.(2019年河北省)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.
甲:如图2,思路是当x为矩形对角线长时就可移转过去,结果取n=13.
乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去,结果取n=14.
丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去,结果取n=13.
下列正确的是( )
A.甲的思路错,他的n值对
B.乙的思路和他的n值都对
C.甲和丙的n值都对
D.甲、乙的思路都错,而丙的思路对
8.(2019年天津市)如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是( )
A. B. C. D.
9.(2019年湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
10.(2019年四川省凉山州)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为( )cm2.
A. B.2π C.π D.π
11.(2019年四川内江市)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )
A.1.6 B.1.8 C.2 D.2.6
12.(2019年四川省巴中市)在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为( )
A.(﹣4,﹣3) B.(4,3) C.(4,﹣3) D.(﹣4,3)
填空题
13.(2019年广西桂林市)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 .
14.(2019年湖北省黄冈市)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是 .
15.(2019年北京市)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为 .
16.(2019年山东省东营市)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是 .
17.(2019年广西梧州市)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是 .
18.(2019年湖北省武汉市)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是 .
解答题
19.(2019年广西南宁市、北部湾经济区、北海市、崇左市、防城港市、钦州市)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1,
(2)请画出与△ABC关于y轴对称的△A2B2C2,
(3)请写出A1、A2的坐标.
20.(2019年江苏省苏州市)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点
(1)求证:;
(2)若,,求的度数.
21.(2019年福建省)在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
22.(2019年湖北省荆州市)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).
(1)在图②中,∠AOF= ,(用含α的式子表示)
(2)在图②中猜想AF与DE的数量关系,并证明你的结论.
23.(2019年山东省潍坊市)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
24.(2019年山东省菏泽市)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD,
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.
第五章图形与变换第32节轴对称与中心对称■考点1.图形的轴对称
(1)定义:
①轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形是成轴对称,这条直线叫做对称轴,两个图形中重合的点叫做对应点,重合的线段叫做对应线段.
②轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.21教育名师原创作品
(2)性质:
①成轴对称的两个图形全等,
②如果两个图形关于某条直线对称.那么连接对应点的线段对称轴垂直平分,
③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.
■考点2.图形的中心对称
(1)定义
①中心对称:平面内一个图形绕着某个点旋转180。后能和另一个图形重合,那么这两个图形成中心对称,这个点叫做它的对称中心,旋转前后的点叫做对应点.
②中心对称图形:一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.21*cnjy*com
(2)性质:
①关于某点成中心对称的两个图形全等.
②成中心对称的两个图形和中心对称图形的对应点连线都通过对称中心,并且被对称中心平分
■考点3.关于原点对称的点的坐标特点
(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).
(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.
注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.
■考点1.图形的轴对称
◇典例:
1.(2019年北京市)下列倡导节约的图案中,是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形
【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
解:A.不是轴对称图形,故此选项错误,
B、不是轴对称图形,故此选项错误,
C、是轴对称图形,故此选项正确,
D、不是轴对称图形,故此选项错误.
故选:C.
【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
【考点】轴对称﹣最短路线问题,菱形的性质
【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.
解:如图
,
作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又∵N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形ABNM′是平行四边形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值为1,
故选:B.
【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.
◆变式训练
1.(2019年天津市)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
解:A.是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:A.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2018年广西贵港市)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A.6 B.3 C.2 D.4.5
【考点】菱形的性质,轴对称-最短路线问题
【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC?BD=AB?E′M求二级可得答案.
解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,
则点P、M即为使PE+PM取得最小值,
其PE+PM=PE′+PM=E′M,
∵四边形ABCD是菱形,
∴点E′在CD上,
∵AC=6,BD=6,
∴AB==3,
由S菱形ABCD=AC?BD=AB?E′M得×6×6=3?E′M,
解得:E′M=2,
即PE+PM的最小值是2,
故选:C.
【点评】 本题主要考查了菱形的性质,轴对称-最短路线问题的综合运用,确定点E′在何位置时,PE+PM的值最小,是解决问题的关键.
■考点2.图形的中心对称
◇典例
1.(2019年广西玉林市)菱形不具备的性质是( )
A.是轴对称图形 B.是中心对称图形
C.对角线互相垂直 D.对角线一定相等
【考点】菱形的性质,轴对称图形,中心对称图形
【分析】根据菱形的性质对各个选项进行分析,从而得到答案.
解:A.是轴对称图形,故正确,
B、是中心对称图形,故正确,
C、对角线互相垂直,故正确,
D、对角线不一定相等,故不正确,
故选:D.
【点评】本题考查了菱形的性质,熟练掌握菱形的性质是解题的关键.
2.(2019年四川省绵阳市)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′= .
【考点】全等三角形的判定与性质,等腰直角三角形的性质,旋转的性质
【分析】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.
解:如图,连接CE′,
∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,
∴AB=BC=2,BD=BE=2,
∵将△BDE绕点B逆时针方向旋转后得△BD′E′,
∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,
∴∠ABD′=∠CBE′,
∴△ABD′≌△CBE′(SAS),
∴∠D′=∠CE′B=45°,
过B作BH⊥CE′于H,
在Rt△BHE′中,BH=E′H=BE′=,
在Rt△BCH中,CH==,
∴CE′=+,
故答案为:.
【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.
◆变式训练
1.(2019年江苏省盐城市)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【考点】轴对称图形,中心对称图形
【分析】直接利用轴对称图形和中心对称图形的概念求解.
解:A.是轴对称图形,不是中心对称图形,故此选项错误,
B、既是中心对称图形也是轴对称图形,故此选项正确,
C、不是轴对称图形,是中心对称图形,故此选项错误,
D、不是轴对称图形,也不是中心对称图形,故此选项错误.
故选:B.
【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.
2.(2019年广西贺州市)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为 .
【考点】正方形的性质,旋转的性质
【分析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,利用勾股定理计算出AE═2,再根据旋转的性质得到AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,于是可判断点G在CB的延长线上,接着证明FA平分∠GAD得到FN=FM=4,然后利用面积法计算出GF,从而计算CG﹣GF就可得到CF的长.
解:作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,
∵正方形ABCD的边长为4,点E是CD的中点,
∴DE=2,
∴AE==2,
∵△ADE绕点A顺时针旋转90°得△ABG,
∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,
而∠ABC=90°,
∴点G在CB的延长线上,
∵AF平分∠BAE交BC于点F,
∴∠1=∠2,
∴∠2+∠4=∠1+∠3,即FA平分∠GAD,
∴FN=FM=4,
∵AB?GF=FN?AG,
∴GF==2,
∴CF=CG﹣GF=4+2﹣2=6﹣2.
故答案为6﹣2.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.也考查了正方形的性质.
■考点3.关于原点对称的点的坐标特点
◇典例
(2019年湖南省常德市)点(﹣1,2)关于原点的对称点坐标是( )
A.(﹣1,﹣2) B.(1,﹣2) C.(1,2) D.(2,﹣1)
【考点】关于原点对称的点的坐标
【分析】坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.
解:根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).
故选:B.
【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
◆变式训练
(2019年山东省滨州市(a卷))已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【考点】在数轴上表示不等式的解集,解一元一次不等式组,关于原点对称的点的坐标
【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.
解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,
∴点P(a﹣3,2﹣a)在第二象限,
∴,
解得:a<2.
则a的取值范围在数轴上表示正确的是:.
故选:C.
【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握不等式组的解法是解题关键.
1.(2019年广东省深圳市)下列图形是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形
【分析】根据轴对称图形的概念求解.
解:A.是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选A.
【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.(2019年广西百色市)下列图形,既是轴对称图形又是中心对称图形的是( )
A.正三角形 B.正五边形
C.等腰直角三角形 D.矩形
【考点】轴对称图形,中心对称图形
【分析】根据轴对称图形与中心对称图形的概念求解.
解:A.正三角形是轴对称图形,不是中心对称图形,
B.正五边形是轴对称图形,不是中心对称图形,
C.等腰直角三角形是轴对称图形,不是中心对称图形,
D.矩形是轴对称图形,也是中心对称图形,
故选:D.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.(2019年吉林省)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )
A.30° B.90° C.120° D.180°
【考点】旋转对称图形
【分析】根据图形的对称性,用360°除以3计算即可得解.
解:∵360°÷3=120°,
∴旋转的角度是120°的整数倍,
∴旋转的角度至少是120°.
故选:C.
【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.
4.(2019年湖北省黄石市)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )
A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)
【考点】正方形的性质,旋转的性质,坐标与图形变化﹣旋转
【分析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标.
解:如图所示,
由旋转得:CB'=CB=2,∠BCB'=90°,
∵四边形ABCD是正方形,且O是AB的中点,
∴OB=1,
∴B'(2+1,2),即B'(3,2),
故选:C.
【点评】本题考查了正方形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.
5.(2019年四川省宜宾市)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE绕着点A顺时针旋转到与△ABF重合,则EF=( )
A. B. C.5 D.2
【考点】正方形的性质,旋转的性质
【分析】根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.
解:由旋转变换的性质可知,△ADE≌△ABF,
∴正方形ABCD的面积=四边形AECF的面积=25,
∴BC=5,BF=DE=1,
∴FC=6,CE=4,
∴EF===2.
故选:D.
【点评】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.
6.(2019年广西贵港市)若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是( )
A.1 B.3 C.5 D.7
【考点】关于原点对称的点的坐标
【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点对称,
∴m﹣1=﹣3,2﹣n=﹣5,
解得:m=﹣2,n=7,
则m+n=﹣2+7=5.
故选:C.
【点评】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
7.(2019年山东省烟台市)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是 .
【考点】轴对称的性质,角的计算
【分析】根据折叠的轴对称性,180°的角对折3次,求出每次的角度即可,
解:在折叠过程中角一直是轴对称的折叠,
∠AOB=22.5°×2=45°,
故答案为45°,
【点评】本题考查轴对称的性质,能够通过折叠理解角之间的对称关系是解题的关键.
8.(2019年四川省泸州市)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b的值是 .
【考点】关于x轴、y轴对称的点的坐标
【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.
解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,
∴a=3,b=1,
则a+b的值是:4.
故答案为:4.
【点评】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
9.(2019年山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 .
【考点】坐标与图形变化﹣对称
【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.
解:∵点P(4,2),
∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,
∴点P′的横坐标为1﹣3=﹣2,
∴对称点P′的坐标为(﹣2,2).
故答案为:(﹣2,2).
【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.
10.(2019年黑龙江省伊春市)如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.
【考点】垂直平分线的性质,轴对称-最短路线问题,勾股定理
【分析】由于S△PAB=S△PCD,这两个三角形等底同高,可得点P在线段AD的垂直平分线上,根据最短路径问题,可得PC+PD=AC此时最小,有勾股定理可求结果.
解:为矩形,
又
点到的距离与到的距离相等,即点线段垂直平分线上,
连接,交与点,此时的值最小,
且
故答案为:
【点睛】此题考查垂直平分线的性质,轴对称-最短路线问题,勾股定理,解题关键在于作辅助线
选择题
1.(2019年广西柳州市)下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )
A.当心吊物安全 B.当心触电安全
C.当心滑跌安全 D.注意安全
【考点】轴对称图形
【分析】根据轴对称的性质可以判断答案,
解:D答案的图形是轴对称图形,
故选:D.
【点评】本题考查轴对称的性质,熟练掌握轴对称的性质是解题的关键.
2.(2019年湖南省株洲市)对于任意的矩形,下列说法一定正确的是( )
A.对角线垂直且相等
B.四边都互相垂直
C.四个角都相等
D.是轴对称图形,但不是中心对称图形
【考点】轴对称图形,中心对称图形
【分析】直接利用矩形的性质分析得出答案.
解:A.矩形的对角线相等,但不垂直,故此选项错误,
B、矩形的邻边都互相垂直,对边互相平行,故此选项错误,
C、矩形的四个角都相等,正确,
D、矩形是轴对称图形,也是中心对称图形,故此选项错误.
故选:C.
【点评】此题主要考查了矩形的性质,正确把握矩形的性质是解题关键.
3.(2019年浙江省杭州市)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
【考点】关于x轴、y轴对称的点的坐标
【分析】直接利用关于y轴对称点的性质得出答案.
解:∵点A(m,2)与点B(3,n)关于y轴对称,
∴m=﹣3,n=2.
故选:B.
【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
4.(2019年广西贵港市)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是( )
A.S1+S2=CP2 B.AF=2FD C.CD=4PD D.cos∠HCD=
【考点】全等三角形的判定与性质,正方形的性质,轴对称的性质,解直角三角形
【分析】根据勾股定理可判断A,连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,
利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B,根据平行线分线段成比例定理可判断C,求得cos∠HCD可判断D.
解:∵正方形ABCD,DPMN的面积分别为S1,S2,
∴S1=CD2,S2=PD2,
在Rt△PCD中,PC2=CD2+PD2,
∴S1+S2=CP2,故A结论正确,
连接CF,
∵点H与B关于CE对称,
∴CH=CB,∠BCE=∠ECH,
在△BCE和△HCE中,
∴△BCE≌△HCE(SAS),
∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,
∴CH=CD,
在Rt△FCH和Rt△FCD中
∴Rt△FCH≌Rt△FCD(HL),
∴∠FCH=∠FCD,FH=FD,
∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,
作FG⊥EC于G,
∴△CFG是等腰直角三角形,
∴FG=CG,
∵∠BEC=∠HEC,∠B=∠FGE=90°,
∴△FEG∽△CEB,
∴==,
∴FG=2EG,
设EG=x,则FG=2x,
∴CG=2x,CF=2x,
∴EC=3x,
∵EB2+BC2=EC2,
∴BC2=9x2,
∴BC2=x2,
∴BC=x,
在Rt△FDC中,FD===x,
∴3FD=AD,
∴AF=2FD,故B结论正确,
∵AB∥CN,
∴=,
∵PD=ND,AE=CD,
∴CD=4PD,故C结论正确,
∵EG=x,FG=2x,
∴EF=x,
∵FH=FD=x,
∵BC=x,
∴AE=x,
作HQ⊥AD于Q,HS⊥CD于S,
∴HQ∥AB,
∴=,即=,
∴HQ=x,
∴HS=CD﹣HQ=x﹣x=x
∴cos∠HCD===,故结论D错误,
故选:D.
【点评】本题考查了正方形的性质,三角形全等的判定和性质三角形相似的判定和性质,勾股定理的应用以及平行线分线段成比例定理,作出辅助线构建等腰直角三角形是解题的关键.
5.(2019年辽宁省辽阳市)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是( )
A.8 B.8 C.8 D.10
【考点】矩形的性质,轴对称的性质,翻折变换(折叠问题)
【分析】由题意得:BF=BC,EF∥AB,由平行线的性质得出∠ABQ=∠BQF,由折叠的性质得:∠BQP=∠C=90°,BQ=BC,得出∠AQB=90°,BF=BQ,证出∠BQF=30°,得出∠ABQ=30°,在Rt△ABQ中,由直角三角形的性质得出AB=2AQ,BQ=AQ=4,即可得出答案.
解:∵四边形ABCD是矩形,
∴∠C=90°,
由题意得:BF=BC,EF∥AB,
∴∠ABQ=∠BQF,
由折叠的性质得:∠BQP=∠C=90°,BQ=BC,
∴∠AQB=90°,BF=BQ,
∴∠BQF=30°,
∴∠ABQ=30°,
在Rt△ABQ中,AB=2AQ,BQ=AQ=4,
∴AQ=4,AB=8,
故选:A.
【点评】本题考查了翻折变换的性质、矩形的性质、轴对称的性质、直角三角形的性质等知识,熟练掌握翻折变换的性质,证出∠ABQ=30°是解题的关键.
6.(2019年安徽省)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是( )
A.0 B.4 C.6 D.8
【考点】正方形的性质,轴对称-最短路径问题,勾股定理
【分析】P点是正方形的边上的动点,我们可以先求PE+PF的最小值,然后根据PE+PF=9判断得出其中一边上P点的个数,即可解决问题.
解:如图,过E点作关于AB的对称点E’,则当E’,P,F三点共线时PE+PF取最小值,
∵∠EAP=45°,
∴∠EA E’=90°,
又∵AE=EF=A E’=4,
∴PE+PF的最小值为E’F=,
∵满足PE+PF=9=,
∴在边AB上存在两个P点使PE+PF=9,
同理在其余各边上也都存在两个P点满足条件,
∴满足PE+PF=9的点P的个数是8,
故选:D.
【点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.
7.(2019年河北省)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.
甲:如图2,思路是当x为矩形对角线长时就可移转过去,结果取n=13.
乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去,结果取n=14.
丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去,结果取n=13.
下列正确的是( )
A.甲的思路错,他的n值对
B.乙的思路和他的n值都对
C.甲和丙的n值都对
D.甲、乙的思路都错,而丙的思路对
【考点】矩形的性质,正方形的性质,平移的性质,旋转的性质
【分析】平行四边形的性质矩形都具有,②角:矩形的四个角都是直角,③边:邻边垂直,④对角线:矩形的对角线相等,⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线,对称中心是两条对角线的交点.
解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14,
乙的思路与计算都正确,
丙的思路与计算都错误,图示情况不是最长,
故选:B.
【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.
8.(2019年天津市)如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是( )
A. B. C. D.
【考点】旋转的性质, 等腰三角形的性质
【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A.C不一定正确
再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC
=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.
解:∵绕点顺时针旋转得到,
∴AC=CD,BC=EC,∠ACD=∠BCE,
∴∠A=∠CDA=;∠EBC=∠BEC=,
∴选项A.C不一定正确
∴∠A =∠EBC
∴选项D正确.
∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,
∴选项B不一定正确;
故选:D.
【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
9.(2019年湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
【考点】规律型:点的坐标,坐标与图形变化﹣旋转,旋转的性质
【分析】探究规律,利用规律解决问题即可.
解:∵四边形OABC是正方形,且OA=1,
∴A(0,1),
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
∴A1(,),A2(1,0),A3(,﹣),…,
发现是8次一循环,所以2019÷8=252…余3,
∴点A2019的坐标为(,﹣)
故选:A.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.
10.(2019年四川省凉山州)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为( )cm2.
A. B.2π C.π D.π
【考点】扇形面积的计算,旋转的性质
【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.
解:∵△AOC≌△BOD,
∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,
故选:B.
【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.
11.(2019年四川内江市)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )
A.1.6 B.1.8 C.2 D.2.6
【考点】等边三角形的性质,勾股定理,旋转的性质
【分析】根据旋转变换的性质得到AD=AB,根据等边三角形的性质解答即可.
解:由旋转的性质可知,AD=AB,
∵∠B=60°,AD=AB,
∴△ADB为等边三角形,
∴BD=AB=2,
∴CD=CB﹣BD=1.6,
故选:A.
【点评】本题考查的是旋转变换的性质、等边三角形的性质,掌握旋转前、后的图形全等是解题的关键.
12.(2019年四川省巴中市)在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为( )
A.(﹣4,﹣3) B.(4,3) C.(4,﹣3) D.(﹣4,3)
【考点】关于原点对称的点的坐标
【分析】根据关于原点的对称点,横、纵坐标都变成相反数解答.
解:∵点A(﹣4,3),点A与点B关于原点对称,
∴点B(4,﹣3).
故选:C.
【点评】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.
填空题
13.(2019年广西桂林市)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 .
【考点】矩形的性质,轨迹,轴对称的性质
【分析】如图,连接BA1,取BC使得中点O,连接OQ,BD.利用三角形的中位线定理证明OQ==定值,推出点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,已解决可解决问题.
解:如图,连接BA1,取BC使得中点O,连接OQ,BD.
∵四边形ABCD是矩形,
∴∠BAD=90°,
∴tan∠ABD==,
∴∠ABD=60°,
∵A1Q=QC,BO=OC,
∴OQ=BA1=AB=,
∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,
∴点Q的运动路径长==π.
故答案为π.
【点评】本题考查轨迹,矩形的性质,轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
14.(2019年湖北省黄冈市)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是 .
【考点】线段的性质:两点之间线段最短,全等三角形的判定与性质,等边三角形的判定与性质,轴对称的性质
【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.
解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.
∵∠CMD=120°,
∴∠AMC+∠DMB=60°,
∴∠CMA′+∠DMB′=60°,
∴∠A′MB′=60°,
∵MA′=MB′,
∴△A′MB′为等边三角形
∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,
∴CD的最大值为14,
故答案为14.
【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.
15.(2019年北京市)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为 .
【考点】反比例函数的性质,反比例函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标
【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.
解:∵点A(a,b)(a>0,b>0)在双曲线y=上,
∴k1=ab,
又∵点A与点B关于x轴的对称,
∴B(a,﹣b)
∵点B在双曲线y=上,
∴k2=﹣ab,
∴k1+k2=ab+(﹣ab)=0,
故答案为:0.
【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.
16.(2019年山东省东营市)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是 .
【考点】等边三角形的性质,菱形的性质,关于x轴、y轴对称的点的坐标,含30°的直角三角形的性质
【分析】设CE和x轴交于H,根据等边三角形的性质可知CH=1,根据勾股定理即可求出AH的长,再根据菱形的性质和含30°的直角三角形的性质可求DH、AO的长,所以OD可求,又因为D在x轴上,纵坐标为0,问题得解.
解:如图,
∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,
∴CH=1,
∴AH=,
∵∠ABO=∠DCH=30°,
∴DH=AO=,
∴OD=﹣﹣=,
∴点D的坐标是(,0).
故答案为:(,0).
【点评】本题考查了菱形的性质、等边三角形的性质、含30°的直角三角形的性质、点关于x轴对称的特点以及勾股定理的运用.
17.(2019年广西梧州市)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是 .
【考点】等边三角形的判定与性质,菱形的性质,旋转的性质
【分析】连接BD交AC于O,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,由直角三角形的性质求出OB=AB=1,OA=OB=,得出AC=2,由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,得出CE=AC﹣AE=2﹣2,证出∠CPE=90°,由直角三角形的性质得出PE=CE=﹣1,PC=PE=3﹣,即可得出结果.
解:连接BD交AC于O,如图所示:
∵四边形ABCD是菱形,
∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,
∴OB=AB=1,
∴OA=OB=,
∴AC=2,
由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,
∴CE=AC﹣AE=2﹣2,
∵四边形AEFG是菱形,
∴EF∥AG,
∴∠CEP=∠EAG=60°,
∴∠CEP+∠ACD=90°,
∴∠CPE=90°,
∴PE=CE=﹣1,PC=PE=3﹣,
∴DP=CD﹣PC=2﹣(3﹣)=﹣1,
故答案为:﹣1.
【点评】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识,熟练掌握旋转的性质和菱形的性质是解题的关键.
18.(2019年湖北省武汉市)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是 .
【考点】旋转的性质,等边三角形的性质,勾股定理,最短路径问题
【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论,
(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.
(1)证明:如图1,在BC上截取BG=PD,
在△ABG和△ADP中
,
∴△ABG≌△ADP(SAS),
∴AG=AP,∠BAG=∠DAP,
∵∠GAP=∠BAD=60°,
∴△AGP是等边三角形,
∴∠AGC=60°=∠APG,
∴∠APE=60°,
∴∠EPC=60°,
连接EC,延长BC到F,使CF=PA,连接EF,
∵将△ABC绕点A逆时针旋转60°得到△ADE,
∴∠EAC=60°,∠EPC=60°,
∵AE=AC,
∴△ACE是等边三角形,
∴AE=EC=AC,
∵∠PAE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,
∴∠PAE=∠ECF,
在△APE和△ECF中
∴△APE≌△ECF(SAS),
∴PE=PF,
∴PA+PC=PE,
(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.
∵△MGD和△OME是等边三角形
∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,
∴∠GMO=∠DME
在△GMO和△DME中
∴△GMO≌△DME(SAS),
∴OG=DE
∴NO+GO+MO=DE+OE+NO
∴当D、E、O、M四点共线时,NO+GO+MO值最小,
∵∠NMG=75°,∠GMD=60°,
∴∠NMD=135°,
∴∠DMF=45°,
∵MG=.
∴MF=DF=4,
∴NF=MN+MF=6+4=10,
∴ND===2,
∴MO+NO+GO最小值为2,
故答案为2,
【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.
解答题
19.(2019年广西南宁市、北部湾经济区、北海市、崇左市、防城港市、钦州市)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1,
(2)请画出与△ABC关于y轴对称的△A2B2C2,
(3)请写出A1、A2的坐标.
【考点】作图﹣轴对称变换,作图﹣平移变换
【分析】(1)直接利用平移的性质得出对应点位置进而得出答案,
(2)直接利用轴对称的性质得出对应点位置进而得出答案,
(3)利用所画图象得出对应点坐标.
解:(1)如图所示:△A1B1C1,即为所求,
(2)如图所示:△A2B2C2,即为所求,
(3)A1(2,3),A2(﹣2,﹣1).
【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.
20.(2019年江苏省苏州市)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点
(1)求证:;
(2)若,,求的度数.
【考点】全等三角形判定与性质,等腰三角形的性质,旋转的性质
【分析】(1)因为,所以有,又因为,所以有,得到;
(2)利用等腰三角形ABE内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到,从而算出∠FGC
解:(1)
(2)
【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键
21.(2019年福建省)在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
【考点】平行四边形的判定,旋转的性质
【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;
(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到BC=AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.
解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,
∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,
∵CA=DA,
∴∠ACD=∠ADC=(180°?30°)=75°,∠ADE=90°-30°=60°,
∴∠CDE=75°?60°=15°;
(2)证明:如图2,
∵点F是边AC中点,
∴BF=AC,
∵∠BAC=30°,
∴BC=AC,
∴BF=BC,
∵△ABC绕点A顺时针旋转60°得到△AED,
∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,
∴DE=BF,△ACD和△BAE为等边三角形,
∴BE=AB,
∵点F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△AFD≌△CBA,
∴DF=BA,
∴DF=BE,
而BF=DE,
∴四边形BEDF是平行四边形.
【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.
22.(2019年湖北省荆州市)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).
(1)在图②中,∠AOF= ,(用含α的式子表示)
(2)在图②中猜想AF与DE的数量关系,并证明你的结论.
【考点】全等三角形的判定与性质,等腰直角三角形,正方形的性质,旋转的性质
【分析】(1)如图2,利用旋转的性质得到∠DOF=∠COE=α,再根据正方形的性质得到∠AOD=90°,从而得到∠AOF=90°﹣α,
(2)如图②,利用正方形的性质得∠AOD=∠COD=90°,OA=OD,再利用△OEF为等腰直角三角形得到OF=OE,利用(1)的结论得到∠AOF=∠DOE,则可证明△AOF≌△DOE,从而得到AF=DE.
解:(1)如图2,
∵△OEF绕点O逆时针旋转α角,
∴∠DOF=∠COE=α,
∵四边形ABCD为正方形,
∴∠AOD=90°,
∴∠AOF=90°﹣α,
故答案为90°﹣α,
(2)AF=DE.
理由如下:
如图②,∵四边形ABCD为正方形,
∴∠AOD=∠COD=90°,OA=OD,
∵∠DOF=∠COE=α,
∴∠AOF=∠DOE,
∵△OEF为等腰直角三角形,
∴OF=OE,
在△AOF和△DOE中
,
∴△AOF≌△DOE(SAS),
∴AF=DE.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.也考查了等腰直角三角形的性质和正方形的性质.
23.(2019年山东省潍坊市)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
【考点】等边三角形的判定与性质,菱形的性质,旋转的性质
【分析】(1)证明△AB′M≌△AD′N(SAS),推出∠B′AM=∠D′AN,即可解决问题.
(2)证明△AEB′≌△AGD′(AAS),推出EB′=GD′,AE=AG,再证明△AHE≌△AHG(SAS),推出EH=GH,推出B′D′=2,即可解决问题.
解:(1)∵四边形AB′C′D′是菱形,
∴AB′=B′C′=C′D′=AD′,
∵∠B′AD′=∠B′C′D′=60°,
∴△AB′D′,△B′C′D′是等边三角形,
∵MN∥B′C′,
∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,
∴△C′MN是等边三角形,
∴C′M=C′N,
∴MB′=ND′,
∵∠AB′M=∠AD′N=120°,AB′=AD′,
∴△AB′M≌△AD′N(SAS),
∴∠B′AM=∠D′AN,
∵∠CAD=∠BAD=30°,
∠DAD′=15°,
∴α=15°.
(2)∵∠C′B′D′=60°,
∴∠EB′G=120°,
∵∠EAG=60°,
∴∠EAG+∠EB′G=180°,
∴四边形EAGB′四点共圆,
∴∠AEB′=∠AGD′,
∵∠EAB′=∠GAD′,AB′=AD′,
∴△AEB′≌△AGD′(AAS),
∴EB′=GD′,AE=AG,
∵AH=AH,∠HAE=∠HAG,
∴△AHE≌△AHG(SAS),
∴EH=GH,
∵△EHB′的周长为2,
∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,
∴AB′=AB=2,
∴菱形ABCD的周长为8.
【点评】本题考查旋转的性质,等边三角形的判定和性质,菱形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
24.(2019年山东省菏泽市)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD,
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.
【考点】全等三角形的判定与性质,等腰直角三角形,旋转的性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的性质
【分析】(1)根据等腰直角三角形的性质得到AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,求得∠BAE=∠DAC,根据全等三角形的性质得到∠ABE=∠ACD,根据余角的性质即可得到结论,
(2)根据全等三角形的性质得到∠ABE=∠ACD,BE=CD,求得∠EPD=90°,得到DE=3,AB=6,求得BD=6﹣3=3,CD==3,根据相似三角形的性质得到PD=,PB=根据三角形的面积公式即可得到结论.
解:(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
∴AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,
即∠BAE=∠DAC,
在△ABE与△ADC中,,
∴△ABE≌△ADC(SAS),
∴∠ABE=∠ACD,
∵∠ABE+∠AFB=∠ABE+∠CFP=90°,
∴∠CPF=90°,
∴BP⊥CD,
(2)在△ABE与△ACD中,,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,BE=CD,
∵∠PDB=∠ADC,
∴∠BPD=∠CAB=90°,
∴∠EPD=90°,BC=6,AD=3,求△PDE的面积.
∵BC=6,AD=3,
∴DE=3,AB=6,
∴BD=6﹣3=3,CD==3,
∵△BDP∽△CDA,
∴==,
∴==,
∴PD=,PB=
∴PE=3﹣=,
∴△PDE的面积=××=.
【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的性质.熟练掌握旋转的性质是解题的关键.