第2章 2.1.1 合情推理学案

文档属性

名称 第2章 2.1.1 合情推理学案
格式 zip
文件大小 896.3KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-11-18 16:58:43

图片预览

文档简介


§2.1 合情推理与演绎推理
2.1.1 合情推理
学习目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.
知识点一 推理
1.推理的概念与分类
(1)根据一个或几个已知事实(或假设)得出一个判断,这种思维方式就是推理.
(2)推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出的判断,叫做结论.
(3)推理一般分为合情推理与演绎推理.
2.合情推理
前提为真时,结论可能为真的推理,叫做合情推理.常用的合情推理有归纳推理和类比推理.
知识点二 归纳推理
思考 (1)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.
(2)统计学中,从总体中抽取样本,然后用样本估计总体.
以上属于什么推理?
答案 属于归纳推理.符合归纳推理的定义特征.
梳理 归纳推理
(1)定义:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳),归纳是从特殊到一般的过程.
(2)归纳推理的一般步骤
①通过观察个别情况发现某些相同性质.
②从已知的相同性质中推出一个明确表述的一般性命题(猜想).
知识点三 类比推理
思考 由三角形的性质:①三角形的两边之和大于第三边,②三角形面积等于高与底乘积的.
可推测出四面体具有如下性质:
(1)四面体任意三个面的面积之和大于第四个面的面积,
(2)四面体的体积等于底面积与高乘积的.
该推理属于什么推理?
答案 类比推理.
梳理 类比推理
(1)定义:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比).
(2)类比推理的一般步骤
①找出两类事物之间的相似性或一致性.
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
1.类比推理得到的结论可作为定理应用.( × )
2.由个别到一般的推理为归纳推理.( √ )
3.在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )
类型一 归纳推理

例1 (1)观察下列等式:
1-=,
1-+-=+,
1-+-+-=++,
…,
据此规律,第n(n∈N+)个等式可为_____________________________________________.
(2)已知f(x)=,设f1(x)=f(x),fn(x)=fn-1(fn-1(x))(n>1,且n∈N+),则f3(x)的表达式为________,猜想fn(x)(n∈N+)的表达式为________.
答案 (1)1-+-+…+-=++…+
(2)f3(x)= fn(x)=
解析 (1)等式左边的特征:第1个有2项,第2个有4项,第3个有6项,且正负交错,故第n(n∈N+)个等式左边有2n项且正负交错,应为1-+-+…+-;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n(n∈N+)个等式右边有n项,且由前几个等式的规律不难发现,第n(n∈N+)个等式右边应为++…+.
(2)∵f(x)=,∴f1(x)=.
又∵fn(x)=fn-1(fn-1(x)),
∴f2(x)=f1(f1(x))==,
f3(x)=f2(f2(x))==,
f4(x)=f3(f3(x))==,
f5(x)=f4(f4(x))==,
∴根据前几项可以猜想fn(x)=(n∈N+).
引申探究 
在本例(2)中,若把“fn(x)=fn-1(fn-1(x))”改为“fn(x)=f(fn-1(x))”,其他条件不变,试猜想fn(x) (n∈N+)的表达式.
解 ∵f(x)=,∴f1(x)=.
又∵fn(x)=f(fn-1(x)),
∴f2(x)=f(f1(x))==,
f3(x)=f(f2(x))==,
f4(x)=f(f3(x))==.
因此,可以猜想fn(x)=(n∈N+).
反思与感悟 (1)已知等式或不等式进行归纳推理的方法
①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形成的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.
(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.
①通过已知条件求出数列的前几项或前n项和;②根据数列中的前几项或前n项和与对应序号之间的关系求解;③运用归纳推理写出数列的通项公式或前n项和公式.
跟踪训练1 (1)已知x>1,由不等式x+>2;x2+>3;x3+>4;…,可以推广为(  )
A.xn+>n B.xn+>n+1
C.xn+>n+1 D.xn+>n
(2)观察下列等式:
-2+-2=×1×2;
-2+-2+-2+-2=×2×3;
-2+-2+-2+…+-2=×3×4;
-2+-2+-2+…+-2=×4×5;
…,
照此规律,-2+-2+-2+…+-2=__________.
答案 (1)B (2)×n×(n+1)
解析 (1)不等式左边是两项的和,第一项是x,x2,x3,…,右边的数是2,3,4,…,利用此规律观察所给不等式,都是写成xn+>n+1的形式,从而归纳出一般性结论:xn+>n+1,故选B.
(2)观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n+1.

例2 如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,…),则第n个图形中顶点的个数为(  )
A.(n+1)(n+2) B.(n+2)(n+3)
C.n2 D.n
答案 B
解析 由已知图形我们可以得到:
当n=1时,顶点共有12=3×4(个),
当n=2时,顶点共有20=4×5(个),
当n=3时,顶点共有30=5×6(个),
当n=4时,顶点共有42=6×7(个),
…,
则第n个图形共有顶点(n+2)(n+3)个,
故选B.
反思与感悟 图形中归纳推理的特点及思路
(1)从图形的数量规律入手,找到数值变化与数量的关系.
(2)从图形结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.
跟踪训练2 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有黑色地面砖的块数是________.
答案 5n+1
解析 观察图案知,从第一个图案起,每个图案中黑色地面砖的个数组成首项为6,公差为5的等差数列,从而第n个图案中黑色地面砖的块数为6+(n-1)×5=5n+1.
类型二 类比推理
例3 如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若====k,则h1+2h2+3h3+4h4=,
类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若====K,则H1+2H2+3H3+4H4等于多少?
解 对平面凸四边形:
S=a1h1+a2h2+a3h3+a4h4
=(kh1+2kh2+3kh3+4kh4)
=(h1+2h2+3h3+4h4),
所以h1+2h2+3h3+4h4=;
类比在三棱锥中,
V=S1H1+S2H2+S3H3+S4H4
=(KH1+2KH2+3KH3+4KH4)
=(H1+2H2+3H3+4H4).
故H1+2H2+3H3+4H4=.
反思与感悟 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中相关结论可以类比得到空间中的相关结论.
(2)平面图形与空间图形的类比如下:
平面图形

线
边长
面积
线线角
三角形
空间图形
线

面积
体积
二面角
四面体
跟踪训练3 (1)若数列{an}(n∈N+)是等差数列,则有数列bn=(n∈N+)也是等差数列;类比上述性质,相应地:若数列{cn}是等比数列,且cn>0,则有数列dn=___(n∈N+)也是等比数列.
答案 
解析 数列{an}(n∈N+)是等差数列,则有数列bn=(n∈N+)也是等差数列.类比猜想:若数列{cn}是各项均为正数的等比数列,则当dn=时,数列{dn}也是等比数列.
(2)如图所示,在△ABC中,射影定理可表示为a=b·cosC+c·cosB,其中a,b,c分别为角A,B,C的对边.类比上述定理,写出对空间四面体性质的猜想.
解 如图所示,在四面体P-ABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cosα+S2·cosβ+S3·cosγ.
1.有一串彩旗,(代表蓝色,(代表黄色.两种彩旗排成一行:
(((((((((((((((((((((((((((…,
那么在前200个彩旗中黄旗的个数为(  )
A.111B.89C.133D.67
答案 D
解析 观察彩旗排列规律可知,颜色的交替成周期性变化,周期为9,每9个旗子中有3个黄旗.则200÷9=22余2,则200个旗子中黄旗的个数为22×3+1=67.故选D.
2.下列平面图形中,与空间的平行六面体作为类比对象较合适的是(  )
A.三角形 B.梯形
C.平行四边形 D.矩形
答案 C
解析 因为平行六面体相对的两个面互相平行,类比平面图形,则相对的两条边互相平行,故选C.
3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得到的一般结论是(  )
A.n+(n+1)+(n+2)+…+(3n-2)=n2
B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2
D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2
答案 B
4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间上,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
答案 1∶8
解析 设两个正四面体的体积分别为V1,V2,
则V1∶V2=S1h1∶S2h2=S1h1∶S2h2=1∶8.
5.在长方形ABCD中,对角线AC与两邻边所成的角分别为α,β,cos2α+cos2β=1,则在立体几何中,给出类比猜想并证明.
解 在长方形ABCD中,
cos2α+cos2β=2+2===1.
于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.
证明如下:
cos2α+cos2β+cos2γ=2+2+2
===1.
1.用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.
2.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.
3.多用下列技巧会提高所得结论的准确性
(1)类比对象的共同属性或相似属性尽可能的多些.
(2)这些共同属性或相似属性应是类比对象的主要属性.
(3)这些共同(相似)属性应包括类比对象的各个方面,并尽可能是多方面.
一、选择题
1.下面使用类比推理,得出的结论正确的是(  )
A.若“a·3=b·3,则a=b”类比出“若a·0=b·0,则a=b”
B.“若(a+b)c=ac+bc”类比出“(a·b)c=ac·bc”
C.“若(a+b)c=ac+bc”类比出“=+(c≠0)”
D.“(ab)n=anbn”类比出“(a+b)n=an+bn”
答案 C
解析 显然A,B,D不正确,只有C正确.
2.观察图形规律,在其右下角的空格内画上合适的图形为(  )
A. B.
C. D.
考点 归纳推理的应用
题点 归纳推理在图形中的应用
答案 A
解析 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.
3.平面内平行于同一直线的两直线平行,由此类比可以得到(  )
A.空间中平行于同一直线的两直线平行
B.空间中平行于同一平面的两直线平行
C.空间中平行于同一直线的两平面平行
D.空间中平行于同一平面的两平面平行
答案 D
解析 利用类比推理,平面中的直线和空间中的平面类比.
4.根据给出的数塔猜测123456×9+7等于(  )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111

A.1111110 B.1111111
C.1111112 D.1111113
答案 B
解析 由数塔猜测应是各位都是1的七位数,
即1111111.
5.用火柴棒摆“金鱼”,如图所示.按照图中所示的规律,第n个“金鱼”图需要火柴棒的根数为(  )
A.6n-2 B.8n-2
C.6n+2 D.8n+2
答案 C
解析 从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.
6.已知{bn}为等比数列,b5=2,则b1·b2·b3·b4·b5·b6·b7·b8·b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为(  )
A.a1a2a3…a9=29
B.a1+a2+a3+…+a9=29
C.a1a2a3…a9=2×9
D.a1+a2+a3+…+a9=2×9
答案 D
7.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=,类比这个结论可知:四面体A-BCD的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体A-BCD的体积为V,则R等于(  )
A. B.
C. D.
答案 C
解析 设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为V=(S1+S2+S3+S4)R,
∴R=.
8.已知f(1)=1,f(2)=3,f(3)=4,f(4)=7,f(5)=11,…,则f(10)等于(  )
A.28B.76C.123D.199
答案 C
解析 由题意可得f(3)=f(1)+f(2),
f(4)=f(2)+f(3),f(5)=f(3)+f(4),
则f(6)=f(4)+f(5)=18,f(7)=f(5)+f(6)=29,
f(8)=f(6)+f(7)=47,f(9)=f(7)+f(8)=76,
f(10)=f(8)+f(9)=123.
二、填空题
9.正整数按下表的规律排列,则上起第2017行,左起第2018列的数应为________________.
考点 归纳推理的应用
题点 归纳推理在数阵(表)中的应用
答案 2017×2018
解析 由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2018列的第一个数为20172+1,由连线规律可知,上起第2017行,左起第2018列的数应为20172+2017=2017×2018.
10.经计算发现下列不等式:+<2,+<2,+<2,…,根据以上不等式的规律,试写出一个对正实数a,b都成立的条件不等式:________________________________.
答案 若a+b=20(a≠b),则+<2,a,b为正实数
11.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=________.
考点 归纳推理
题点 归纳推理在数对(组)中的应用
答案 -g(x)
解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,
故g(-x)=-g(x).
12.如图(甲)是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,…,OAn,…的长度构成数列{an},则此数列{an}的通项公式为an=________.
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 
解析 根据OA1=A1A2=A2A3=…=A7A8=1和图(乙)中的各直角三角形,由勾股定理,可得a1=OA1=1,a2=OA2===,a3=OA3===,…,故可归纳推测出an=.
三、解答题
13.设a>0,且a≠1,f(x)=.
(1)求值:f(0)+f(1),f(-1)+f(2);
(2)由(1)的结果归纳概括对所有实数x都成立的一个等式,并加以证明.
解 (1)f(0)+f(1)=+==,
f(-1)+f(2)=+==.
(2)由(1)归纳得对一切实数x,
有f(x)+f(1-x)=.
证明:f(x)+f(1-x)=+
=+===.
四、探究与拓展
14.对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,52的“分裂”中的最大数是b,则a+b=________.
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 30
解析 观察题图易得
∴a=21,b=9,∴a+b=30.
15.如图(1),在平面内有面积关系=·,写出图(2)中类似的体积关系,并证明你的结论.
解 类比=·,
有=··
证明如下:
如图(2),设C′,C到平面PAB的距离分别为h′,h.
则=,
故=
==.