2.2.2 反证法
学习目标 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.
知识点 反证法
王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”
思考1 本故事中王戎运用了什么论证思想?
答案 运用了反证法思想.
思考2 反证法解题的实质是什么?
答案 否定结论,导出矛盾,从而证明原结论正确.
梳理 (1)反证法的概念
一般地,由证明p?q转向证明:綈q?r?…?t,t与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.
(2)反证法常见的几种矛盾
①与假设矛盾.
②与数学公理、定理、公式、定义或已被证明了的结论矛盾.
③与公认的简单事实矛盾(例如,导出0=1,0≠0之类的矛盾).
(3)反证法证明数学命题的一般步骤
①分清命题的条件和结论.
②做出与命题结论相矛盾的假设.
③由假设出发,应用正确的推理方法,推出矛盾的结果.
④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.
1.反证法属于间接证明问题的方法.( √ )
2.反证法的证明过程既可以是合情推理也可以是一种演绎推理.( × )
3.反证法的实质是否定结论导出矛盾.( √ )
类型一 用反证法证明否定性命题
例1 已知三个正数a,b,c成等比数列但不成等差数列.求证:,,不成等差数列.
证明 假设,,成等差数列,则2=+,
∴4b=a+c+2.①
∵a,b,c成等比数列,
∴b2=ac,②
由②得b=,代入①式,
得a+c-2=(-)2=0,
∴a=c,从而a=b=c.
这与已知a,b,c不成等差数列相矛盾,
∴假设不成立.
故,,不成等差数列.
反思与感悟 对某些结论为肯定形式或者否定命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.
跟踪训练1 已知正整数,a,b,c满足a2+b2=c2.求证a,b,c不可能都是奇数.
证明 假设a,b,c都是奇数,则a2,b2,c2都是奇数.
左边=奇数+奇数=偶数,右边=奇数,得偶数=奇数,矛盾.
∴假设不成立,∴a,b,c不可能都是奇数.
类型二 用反证法证明“至多、至少”类问题
例2 a,b,c∈(0,2),求证:(2-a)b,(2-b)c,(2-c)a不能都大于1.
证明 假设(2-a)b,(2-b)c,(2-c)a都大于1.
因为a,b,c∈(0,2),所以2-a>0,2-b>0,2-c>0.
所以≥>1.
同理,≥>1,
≥>1.
三式相加,得++>3,
即3>3,矛盾.
所以(2-a)b,(2-b)c,(2-c)a不能都大于1.
反思与感悟 (1)用反证法证明“至少”“至多”类命题,可减少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什么,避免出现错误.需仔细体会“至少有一个”“至多有一个”等表达的意思.
(2)常用的“原结论词”与“反设词”归纳如下表:
原结论词
至少有一个
至多有一个
至少有n个
至多有n个
反设词
一个也没有(不存在)
至少有两个
至多有n-1个
至少有n+1个
跟踪训练2 已知a,b,c是互不相等的实数,求证:由y1=ax2+2bx+c,y2=bx2+2cx+a和y3=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.
证明 假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点,
由y1=ax2+2bx+c,y2=bx2+2cx+a,y3=cx2+2ax+b,
得Δ1=(2b)2-4ac≤0,Δ2=(2c)2-4ab≤0,
且Δ3=(2a)2-4bc≤0.
同向不等式求和,得4b2+4c2+4a2-4ac-4ab-4bc≤0,
所以2a2+2b2+2c2-2ab-2bc-2ac≤0,
所以(a-b)2+(b-c)2+(a-c)2≤0,
所以a=b=c.
这与题设a,b,c互不相等矛盾,
因此假设不成立,从而命题得证.
类型三 用反证法证明唯一性命题
例3 求证:方程2x=3有且只有一个根.
证明 ∵2x=3,∴x=log23.
这说明方程2x=3有根.
下面用反证法证明方程2x=3的根是唯一的.
假设方程2x=3至少有两个根b1,b2(b1≠b2),
则=3,=3,两式相除得=1,
∴b1-b2=0,则b1=b2,这与b1≠b2矛盾.
∴假设不成立,从而原命题得证.
反思与感悟 用反证法证明唯一性命题的一般思路:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.
跟踪训练3 求证:两条相交直线有且只有一个交点.
证明 设两直线为a,b,假设结论不成立,即有两种可能:无交点;至少有两个交点.
(1)若直线a,b无交点,那么a∥b或a,b是异面直线,与已知矛盾;
(2)若直线a,b至少有两个交点,设为A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.
所以假设不成立,两条相交直线有且只有一个交点.
1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设( )
A.三角形中至少有一个直角或钝角
B.三角形中至少有两个直角或钝角
C.三角形中没有直角或钝角
D.三角形中三个角都是直角或钝角
答案 B
2.用反证法证明“在三角形中至少有一个内角不小于60°”,应先假设这个三角形中( )
A.有一个内角小于60°
B.每一个内角都小于60°
C.有一个内角大于60°
D.每一个内角都大于60°
答案 B
3.“a
A.a≠b B.a>b
C.a=b D.a=b或a>b
答案 D
4.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设( )
A.a不垂直于c B.a,b都不垂直于c
C.a⊥b D.a与b相交
答案 D
5.已知f(x)=x2+px+q.
(1)求证:f(1)+f(3)-2f(2)=2;
(2)求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.
证明 (1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.
(2)假设|f(1)|,|f(2)|,|f(3)|中至少有一个不小于不成立,
则|f(1)|,|f(2)|,|f(3)|都小于,
则|f(1)|+2|f(2)|+|f(3)|<2.
因为|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)
=(1+p+q)+(9+3p+q)-(8+4p+2q)=2,这与|f(1)|+2|f(2)|+|f(3)|<2相矛盾,
所以假设不成立,原命题成立,
所以|f(1)|,|f(2)|,|f(3)|中至少有一个不少于.
用反证法证题要把握三点
(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.
(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.
(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.
一、选择题
1.反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是
①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾.
其中正确的为( )
A.①②③④ B.①③
C.①③④ D.①②
答案 A
2.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为( )
A.a,b,c都是偶数
B.a,b,c都是奇数
C.a,b,c中至少有两个偶数
D.a,b,c中都是奇数或至少有两个偶数
答案 D
解析 自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时,正确的反设为“a,b,c中都是奇数或至少有两个偶数”.
3.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程至少有一根的绝对值大于或等于1,以下结论正确的是( )
A.(1)与(2)的假设都错误
B.(1)与(2)的假设都正确
C.(1)的假设正确;(2)的假设错误
D.(1)的假设错误;(2)的假设正确
答案 D
解析 (1)的假设应为p+q>2,(2)的假设正确.
4.有下列叙述:
①“x=y”的反面是“x>y或xA.0个B.1个C.2个D.3个
答案 B
解析 ①对;②错,应为三角形的外心在三角形内或在三角形的边上;③错,应为三角形可以有2个或2个以上的钝角.
5.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于( )
A.0B.C.D.1
答案 B
解析 假设a,b,c都小于,则a+b+c<1,故与已知a+b+c=1相矛盾.故选B.
6.设a,b,c都是正数,则三个数a+,b+,c+( )
A.都大于2 B.至少有一个大于2
C.至少有一个不小于2 D.至少有一个不大于2
答案 C
解析 假设a+<2,b+<2,c+<2,
则++<6.
又++
=++≥2+2+2=6,
这与假设得到的不等式相矛盾,从而假设不正确,所以这三个数至少有一个不小于2.
二、填空题
7.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设________________.
答案 x=a或x=b
8.用反证法证明“一个三角形不能有两个直角”有三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.
②所以一个三角形不能有两个直角.
③假设△ABC中有两个直角,不妨设∠A=∠B=90°.
上述步骤的正确顺序为________.
答案 ③①②
9.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.
根据以上条件,可以判断偷珠宝的人是________.
答案 甲
解析 假如甲:我没有偷是真的,则乙:丙是小偷;丙:丁是小偷是假的;丁:我没有偷就是真的,与他们四人中有一人说真话矛盾.
假如甲:我没有偷是假的,则丁:我没有偷就是真的,乙:丙是小偷,丙:丁是小偷是假的,成立.
∴可以判断偷珠宝的人是甲.
10.完成反证法证题的全过程.
题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则________均为奇数.①
因为7个奇数之和为奇数,故有
(a1-1)+(a2-2)+…+(a7-7)为________.②
而(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=________.③
②与③矛盾,故p为偶数.
答案 ①a1-1,a2-2,…,a7-7 ②奇数 ③0
解析 由假设p为奇数可知,(a1-1),(a2-2),…,(a7-7)均为奇数,故(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾.
11.若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是____________________.
答案 (-∞,-2]∪[-1,+∞)
解析 若两方程均无实根,则Δ1=(a-1)2-4a2
=(3a-1)(-a-1)<0,∴a<-1或a>.
Δ2=(2a)2+8a=4a(a+2)<0,
∴-2若两个方程至少有一个方程有实根,
则a≤-2或a≥-1.
三、解答题
12.若a,b,c均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+.求证:a,b,c中至少有一个是大于0的.
证明 假设a,b,c都不大于0,
则a≤0,b≤0,c≤0,∴a+b+c≤0,
而a+b+c=++=(x2-2x)+(y2-2y)+(z2-2z)+π=(x-1)2+(y-1)2+(z-1)2+π-3,
∴a+b+c>0.这与a+b+c≤0矛盾,
∴假设不成立,
故a,b,c中至少有一个是大于0的.
13.已知f(x)=ax+(a>1),求证:方程f(x)=0没有负数根.
证明 假设x0是f(x)=0的负数根,
则x0<0且x0≠-1,且ax0=-,
∴0解得故方程f(x)=0没有负数根.
四、探究与拓展
14.若a,b,c,d都是有理数,,都是无理数,且a+=b+,则a与b,c与d之间的数量关系为_______________________________________________________________.
考点 反证法及应用
题点 反证法的应用
答案 a=b,c=d
解析 假设a≠b,令a=b+m(m是不等于零的有理数),
于是b+m+=b+,
所以m+=,两边平方整理得=.
左边是无理数,右边是有理数,矛盾,
因此a=b,从而c=d.
15.已知等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N+),求证:数列{bn}中任意不同的三项都不可能成为等比数列.
(1)解 设公差为d,由已知得
∴d=2,故an=2n-1+,Sn=n(n+).
(2)证明 由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0.
∵p,q,r∈N+,∴
∴2=pr,(p-r)2=0,
∴p=r,这与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成为等比数列.