【备考2020】中考数学一轮复习 第35节 相似三角形学案(原卷+解析卷)

文档属性

名称 【备考2020】中考数学一轮复习 第35节 相似三角形学案(原卷+解析卷)
格式 zip
文件大小 2.1MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2019-11-21 11:30:10

文档简介


第五章图形与变换第35节相似三角形
1.比例线段 在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
2.比例的基本性质 (1)基本性质:? ad= ;(b、d≠0)
(2)合比性质:?=;(b、d≠0)
(3)等比性质:=…==k(b+d+…+n≠0)?
= .(b、d、···、n≠0)
3.平行线分线段成比例定理及推论
(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l3∥l4∥l5,则.
(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB∥CD,则.21世纪教育网版权所有
(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.
如图所示,若DE∥BC,则△ADE∽△ABC.
4.黄金分割 点C把线段AB分成两条线段AC和BC,如果==≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
■考点2.相似三角形的性质与判定
1.相似三角形的判定
(1) 两角对应相等的两个三角形相似(AAA).
如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.

(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A=∠D,,则△ABC∽△DEF.
(3) 三边对应成比例的两个三角形相似.如图,若,则△ABC∽△DEF.
判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条
件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中
若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证
明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等
或找底、腰对应成比例.
2.相似三角形的性质
(1)对应角 ,对应边 .
(2)周长之比等于 ,面积之比等于 .
(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于 .
3.相似三角形的基本模型

(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.
(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.
■考点3.相似三角形的应用
(1)利用影长测量物体的高度.①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度. (2)利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.
(3)借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
■考点1比例线段
◇典例:
1.(2018年甘肃省定西市)已知=(a≠0,b≠0),下列变形错误的是(  )
A.= B.2a=3b C.= D.3a=2b
【考点】比例的性质
【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.
解:由=得,3a=2b,
A、由原式可得:3a=2b,正确;
B、由原式可得2a=3b,错误;
C、由原式可得:3a=2b,正确;
D、由原式可得:3a=2b,正确;
故选:B.
【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.
2.(2017年贵州省六盘水市)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是(  )
A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1
【考点】黄金分割;矩形的性质.
【分析】根据黄金矩形的定义判断即可.
解:∵宽与长的比是的矩形叫做黄金矩形,
∴=,
∴a=2,b=﹣1,
故选D.
【点评】本题主要考查了黄金矩形,记住定义是解题的关键.
3.(2019年四川内江市)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为(  )
A.6 B.7 C.8 D.9
【考点】平行线分线段成比例
【分析】利用平行线分线段成比例定理得到=,利用比例性质求出AE,然后计算AE+EC即可.
解:∵DE∥BC,
∴=,即=,
∴AE=6,
∴AC=AE+EC=6+2=8.
故选:C.
【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
◆变式训练
1.【2017娄底】湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1:6700000表示出来,使读者能够全面、直观地认识我国版图,若在这种地图上量得我国南北的图上距离是82.09厘米,则我国南北的实际距离大约是   千米(结果精确到1千米).
2.(2018年宁夏)已知:=,则的值是   .
■考点2.相似三角形的性质与判定
◇典例
1.(2019年江苏省苏州市)如图,在中,点为边上的一点,且,,过点作,交于点,若,则的面积为( )
A. B. C. D.
【考点】相似三角形的判定和性质,等腰直角三角形的性质
【分析】先证△CDE∽△CBA,利用相似三角形性质得到,即,在直角三角形ABD中易得,从而解出DC,得到△ABC的高,然后利用三角形面积公式进行解题即可
解:
易证△CDE∽△CBA

由题得
解得
的高易得:
故选B
【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC的长度
2.(2016年浙江省杭州市)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
(1)求证:△ADF∽△ACG;
(2)若,求的值.
【考点】相似三角形的判定与性质.
【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
(2)利用相似三角形的性质得到=,由此即可证明.
(1)证明:∵∠AED=∠B,∠DAE=∠DAE,
∴∠ADF=∠C,
∵=,
∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,
∴=,
又∵=,
∴=,
∴=1.
【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型. 
◆变式训练
1.(2019年四川省凉山州)在?ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是   .
2.(2019年山东省泰安市)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.
(1)试判断AG与FG是否相等?并给出证明,
(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明,若不垂直,说明理由.
■考点3.相似三角形的应用
◇典例
(2018年浙江省绍兴市)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为(  )
A.0.2m B.0.3m C.0.4m D.0.5m
【考点】相似三角形的应用
【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.
解:∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO=90°,
又∵∠AOB=∠COD,
∴△ABO∽△CDO,
则=,
∵AO=4m,AB=1.6m,CO=1m,
∴=,
解得:CD=0.4,
故选:C.
【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.
◆变式训练
【2018岳阳】《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是   步.
1.(2019年重庆市(a卷))如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是(  )
A.2 B.3 C.4 D.5
2.(2019年广西玉林市)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有(  )
A.3对 B.5对 C.6对 D.8对
3.(2019年广西贺州市)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于(  )
A.5 B.6 C.7 D.8
4.(2019年广西贺州市)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于(  )
A.5 B.6 C.7 D.8
5.(2019年黑龙江省哈尔滨市)如图,在平行四边形中,点在对角线上,,交于点,,交于点,则下列式子一定正确的是( ).
A. B. C. D.
6.(2019年贵州省铜仁市)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为( )
A. B.
C. D.
7.(2019年江苏省淮安市)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A.B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=   .
8.(2019年四川省泸州市)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为   .
9.(2019年四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为   .
10.(2019年山东省潍坊市)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
选择题
1.(2019年辽宁省沈阳市)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是(  )
A.3:5 B.9:25 C.5:3 D.25:9
2.(2019年山东省淄博市(a卷))如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为(  )
A.2a B.a C.3a D.a
3.(2019年浙江省杭州市)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则(  )
A.= B.= C.= D.=
4.(2019年四川省凉山州)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=(  )
A.1:2 B.1:3 C.1:4 D.2:3
5.(2019年湖南省常德市)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是(  )
A.20 B.22 C.24 D.26
6.(2019年四川省绵阳市)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=(  )
A. B. C. D.
7.(2019年四川省乐山市)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为(  )
A. B. C. D.
8.(2019年四川省乐山市)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于(  )
A. B.1 C. D.
9.(2019年四川省巴中市)如图?ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=(  )
A.2:3 B.3:2 C.9:4 D.4:9
10.(2019年广西玉林市)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是(  )
A.5 B.6 C.7 D.8
11.(2019年贵州省毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )
A.100cm2 B.150cm2 C.170cm2 D.200cm2
12.(2019年黑龙江省伊春市)如图,在平行四边形中,,,过点作边的垂线交的延长线于点,点是垂足,连接、,交于点.则下列结论:①四边形是正方形;②;③;④,正确的个数是(  )
A. B. C. D.
填空题
13.(2019年江苏省南京 )如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
14.(2019年江苏省苏州市)如图,扇形中,.为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为___________
15.(2019年山东省聊城市)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为   .
16.(2019年天津市)如图,正方形纸片的边长为12,是边上一点,连接.折叠该纸片,使点落在上的点,并使折痕经过点,得到折痕,点在上.若,则的长为__________.
17.(2019年江苏省常州市)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=   .
18.(2019年四川省宜宾市)如图,△ABC和△CDE都是等边三角形,且点A.C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是   (写出所有正确结论的序号).
AM=BN,②△ABF≌△DNF,③∠FMC+∠FNC=180°,④=
解答题
19.(2019年广东省)如图,在中,点是边上的一点.
(1)请用尺规作图法,在内,求作,使,交于;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若,求的值.
20.(2019年湖北省荆门市)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E,再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.
21.(2019年四川省凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.
(1)求证:BD2=AD?CD,
(2)若CD=6,AD=8,求MN的长.
22.(2019年广西梧州市)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F,连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.
(1)求DE的长,
(2)求证:∠1=∠DFC.
23.(2019年浙江省温州市)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.
(1)求证:四边形DCFG是平行四边形.
(2)当BE=4,CD=AB时,求⊙O的直径长.
24.(2019年四川省乐山市)在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.
(1)如图1,当EF∥BC时,求证:+=1,
(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.
(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.
25.(2019年山东省泰安市)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.
(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形,
(2)若PE⊥EC,如图②,求证:AE?AB=DE?AP,
(3)在(2)的条件下,若AB=1,BC=2,求AP的长.

第五章图形与变换第35节相似三角形
■考点1比例线段
比例线段 在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
2.比例的基本性质 (1)基本性质:? ad=bc ;(b、d≠0)
(2)合比性质:?=;(b、d≠0)
(3)等比性质:=…==k(b+d+…+n≠0)?
=k .(b、d、···、n≠0)
3.平行线分线段成比例定理及推论
(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l3∥l4∥l5,则.
(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB∥CD,则.
(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.
如图所示,若DE∥BC,则△ADE∽△ABC.
4.黄金分割 点C把线段AB分成两条线段AC和BC,如果==≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
■考点2.相似三角形的性质与判定
1.相似三角形的判定
(1) 两角对应相等的两个三角形相似(AAA).
如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.

(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A=∠D,,则△ABC∽△DEF.
(3) 三边对应成比例的两个三角形相似.如图,若,则△ABC∽△DEF.
判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条
件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中
若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证
明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等
或找底、腰对应成比例.
2.相似三角形的性质
(1)对应角 相等 ,对应边 成比例 .
(2)周长之比等于 相似比 ,面积之比等于 相似比的平方 .
(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于 相似比 .
3.相似三角形的基本模型

(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.
(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.
■考点3.相似三角形的应用
(1)利用影长测量物体的高度.①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度. (2)利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.
(3)借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
■考点1比例线段
◇典例:
1.(2018年甘肃省定西市)已知=(a≠0,b≠0),下列变形错误的是(  )
A.= B.2a=3b C.= D.3a=2b
【考点】比例的性质
【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.
解:由=得,3a=2b,
A、由原式可得:3a=2b,正确;
B、由原式可得2a=3b,错误;
C、由原式可得:3a=2b,正确;
D、由原式可得:3a=2b,正确;
故选:B.
【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.
2.(2017年贵州省六盘水市)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是(  )
A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1
【考点】黄金分割;矩形的性质.
【分析】根据黄金矩形的定义判断即可.
解:∵宽与长的比是的矩形叫做黄金矩形,
∴=,
∴a=2,b=﹣1,
故选D.
【点评】本题主要考查了黄金矩形,记住定义是解题的关键.
3.(2019年四川内江市)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为(  )
A.6 B.7 C.8 D.9
【考点】平行线分线段成比例
【分析】利用平行线分线段成比例定理得到=,利用比例性质求出AE,然后计算AE+EC即可.
解:∵DE∥BC,
∴=,即=,
∴AE=6,
∴AC=AE+EC=6+2=8.
故选:C.
【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
◆变式训练
1.【2017娄底】湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1:6700000表示出来,使读者能够全面、直观地认识我国版图,若在这种地图上量得我国南北的图上距离是82.09厘米,则我国南北的实际距离大约是   千米(结果精确到1千米).
【考点】比例线段.
【分析】由比例尺的定义计算可得.
解:我国南北的实际距离大约是82.09×67000000=550003000(cm)≈5500(km),
故答案为:5500.
【点评】本题主要考查比例线段,熟练掌握比例尺的定义是解题的关键. 
2.(2018年宁夏)已知:=,则的值是   .
【考点】比例的性质
【分析】根据等式的性质,可用a表示b,根据分式的性质,可得答案.
解:由=,得
b=a.
==﹣,
故答案为:﹣.
【点评】本题考查了比例的性质,利用等式的性质得出b=a是解题关键,又利用了分式的性质.
■考点2.相似三角形的性质与判定
◇典例
1.(2019年江苏省苏州市)如图,在中,点为边上的一点,且,,过点作,交于点,若,则的面积为( )
A. B. C. D.
【考点】相似三角形的判定和性质,等腰直角三角形的性质
【分析】先证△CDE∽△CBA,利用相似三角形性质得到,即,在直角三角形ABD中易得,从而解出DC,得到△ABC的高,然后利用三角形面积公式进行解题即可
解:
易证△CDE∽△CBA

由题得
解得
的高易得:
故选B
【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC的长度
2.(2016年浙江省杭州市)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
(1)求证:△ADF∽△ACG;
(2)若,求的值.
【考点】相似三角形的判定与性质.
【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
(2)利用相似三角形的性质得到=,由此即可证明.
(1)证明:∵∠AED=∠B,∠DAE=∠DAE,
∴∠ADF=∠C,
∵=,
∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,
∴=,
又∵=,
∴=,
∴=1.
【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型. 
◆变式训练
3.(2019年四川省凉山州)在?ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是   .
【考点】平行四边形的性质,相似三角形的判定与性质
【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.
解:①当AE:ED=2:3时,
∵四边形ABCD是平行四边形,
∴AD∥BC,AE:BC=2:5,
∴△AEF∽△CBF,
∴S△AEF:S△CBF=()2=4:25,
②当AE:ED=3:2时,
同理可得,S△AEF:S△CBF=()2=9:25,
故答案为:4:25或9:25.
【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
4.(2019年山东省泰安市)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.
(1)试判断AG与FG是否相等?并给出证明,
(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明,若不垂直,说明理由.
【考点】全等三角形的判定与性质,等腰直角三角形,正方形的性质,平行线分线段成比例
【分析】(1)过点F作FM⊥AB交BA的延长线于点M,可证四边形AGFM是矩形,可得AG=MF,AM=FG,由“AAS”可证△EFM≌△CEB,可得BE=MF,ME=BC=AB,可得BE=MA=MF=AG=FG,
(2)延长GH交CD于点N,由平行线分线段成比例可得,且CH=FH,可得GH=HN,NC=FG,即可求DG=DN,由等腰三角形的性质可得DH⊥HG.
解:(1)AG=FG,
理由如下:如图,过点F作FM⊥AB交BA的延长线于点M
∵四边形ABCD是正方形
∴AB=BC,∠B=90°=∠BAD
∵FM⊥AB,∠MAD=90°,FG⊥AD
∴四边形AGFM是矩形
∴AG=MF,AM=FG,
∵∠CEF=90°,
∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°
∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC
∴△EFM≌△CEB(AAS)
∴BE=MF,ME=BC
∴ME=AB=BC
∴BE=MA=MF
∴AG=FG,
(2)DH⊥HG
理由如下:如图,延长GH交CD于点N,
∵FG⊥AD,CD⊥AD
∴FG∥CD
∴,且CH=FH,
∴GH=HN,NC=FG
∴AG=FG=NC
又∵AD=CD,
∴GD=DN,且GH=HN
∴DH⊥GH
【点评】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明△EFM≌△CEB是本题的关键.
■考点3.相似三角形的应用
◇典例
(2018年浙江省绍兴市)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为(  )
A.0.2m B.0.3m C.0.4m D.0.5m
【考点】相似三角形的应用
【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.
解:∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO=90°,
又∵∠AOB=∠COD,
∴△ABO∽△CDO,
则=,
∵AO=4m,AB=1.6m,CO=1m,
∴=,
解得:CD=0.4,
故选:C.
【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.
◆变式训练
【2018岳阳】《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是   步.
【考点】相似三角形的应用
【分析】如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.
解:如图1,∵四边形CDEF是正方形,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=12﹣x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴,
∴,
x=,
如图2,四边形DGFE是正方形,
过C作CP⊥AB于P,交DG于Q,
设ED=x,
S△ABC=AC?BC=AB?CP,
12×5=13CP,
CP=,
同理得:△CDG∽△CAB,
∴,
∴,
x=,
∴该直角三角形能容纳的正方形边长最大是(步),
故答案为:.
【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
1.(2019年重庆市(a卷))如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是(  )
A.2 B.3 C.4 D.5
【考点】相似三角形的性质
【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.
解:∵△ABO∽△CDO,
∴=,
∵BO=6,DO=3,CD=2,
∴=,
解得:AB=4.
故选:C.
【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.
2.(2019年广西玉林市)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有(  )
A.3对 B.5对 C.6对 D.8对
【考点】相似三角形的判定
【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为AB∥EF∥DC,AD∥BC,所以△AEG∽△ADC∽△CFG∽△CBA,有6种组合
解:图中三角形有:△AEG,△ADC,CFG,△CBA,
∵AB∥EF∥DC,AD∥BC
∴△AEG∽△ADC∽△CFG∽△CBA
共有6个组合分别为:∴△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽CFG,△ADC∽△CBA,△CFG∽△CBA
故选:C.
【点评】本题主要考查相似三角形的判定.
3.(2019年广西贺州市)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于(  )
A.5 B.6 C.7 D.8
【考点】相似三角形的判定与性质
【分析】由平行线得出△ADE∽△ABC,得出对应边成比例=,即可得出结果.
解:∵DE∥BC,
∴△ADE∽△ABC,
∴=,
即=,
解得:BC=6,
故选:B.
【点评】本题考查了相似三角形的判定与性质,证明三角形相似得出对应边成比例是解题的关键.
4.(2019年广西贺州市)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于(  )
A.5 B.6 C.7 D.8
【考点】相似三角形的判定与性质
【分析】由平行线得出△ADE∽△ABC,得出对应边成比例=,即可得出结果.
解:∵DE∥BC,
∴△ADE∽△ABC,
∴=,
即=,
解得:BC=6,
故选:B.
【点评】本题考查了相似三角形的判定与性质,证明三角形相似得出对应边成比例是解题的关键.
5.(2019年黑龙江省哈尔滨市)如图,在平行四边形中,点在对角线上,,交于点,,交于点,则下列式子一定正确的是( ).
A. B. C. D.
【考点】相似三角形的判定与性质,平行四边形的判定与性质
【分析】由题意可证四边形为平行四边形,,根据相似三角形对应线段成比例及平形四边形对边相等的性质判断即可.
解:∵在中,
∴易证四边形为平行四边形
∴易证
∴,A项错误
,B项错误
,C项错误
,D项正确
故选:D.
【点睛】本题主要考查了相似三角形的性质、平行四边形的判定与性质,熟练运用两者性质确定线段比例关系是解题的关键.
6.(2019年贵州省铜仁市)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为( )
A. B.
C. D.
【考点】动点问题的函数图象,相似三角形的判定与性质
【分析】根据图形先利用平行线的性质求出△BEF∽△BAC,再利用相似三角形的性质得出x的取值范围和函数解析式即可解答
解:当0≤x≤4时,
∵BO为△ABC的中线,EF∥AC,
∴BP为△BEF的中线,△BEF∽△BAC,
∴,即,解得y,
同理可得,当4<x≤8时,.
故选:A.
【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似
7.(2019年江苏省淮安市)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A.B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=   .
【考点】平行线分线段成比例
【分析】根据l1∥l2∥l3,由平行线分线段成比例定理得到成比例线段,代入已知数据计算即可得到答案.
解:∵l1∥l2∥l3,
∴=,
又AB=3,DE=2,BC=6,
∴EF=4,
故答案为:4.
【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系是解题的关键.
8.(2019年四川省泸州市)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为   .
【考点】勾股定理,等腰直角三角形,相似三角形的判定与性质
【分析】过D作DH⊥AC于H,根据等腰三角形的性质得到AC=BC=15,∠CAD=45°,求得AH=DH,得到CH=15﹣DH,根据相似三角形的性质即可得到结论.
解:过D作DH⊥AC于H,
∵在等腰Rt△ABC中,∠C=90°,AC=15,
∴AC=BC=15,
∴∠CAD=45°,
∴AH=DH,
∴CH=15﹣DH,
∵CF⊥AE,
∴∠DHA=∠DFA=90°,
∴∠HAF=∠HDF,
∴△ACE∽△DHC,
∴=,
∵CE=2EB,
∴CE=10,
∴=,
∴DH=9,
∴AD=9,
故答案为:9.
【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.
9.(2019年四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为   .
【考点】二次函数的最值,正方形的性质,相似三角形的判定与性质
【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.
解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,
∴∠BEP=∠CPQ.
又∠B=∠C=90°,
∴△BPE∽△CQP.
∴.
设CQ=y,BP=x,则CP=12﹣x.
∴,化简得y=﹣(x2﹣12x),
整理得y=﹣(x﹣6)2+4,
所以当x=6时,y有最大值为4.
故答案为4.
【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.
10.(2019年山东省潍坊市)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
【考点】全等三角形的判定与性质,等腰直角三角形,正方形的性质,平行线分线段成比例
【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论,
(2)由题意可得DE=2,由平行线分线段成比例可得=,即可求EM的长.
证明:(1)∵四边形ABCD,四边形ECGF都是正方形
∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°
∵AD∥BC,AH∥DG
∴四边形AHGD是平行四边形
∴AH=DG,AD=HG=CD
∵CD=HG,∠ECG=∠CGF=90°,FG=CG
∴△DCG≌△HGF(SAS)
∴DG=HF,∠HFG=∠HGD
∴AH=HF,
∵∠HGD+∠DGF=90°
∴∠HFG+∠DGF=90°
∴DG⊥HF,且AH∥DG
∴AH⊥HF,且AH=HF
∴△AHF为等腰直角三角形.
(2)∵AB=3,EC=5,
∴AD=CD=3,DE=2,EF=5
∵AD∥EF
∴=,且DE=2
∴EM=
【点评】本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,灵活运用这些知识进行推理是本题的关键.
选择题
1.(2019年辽宁省沈阳市)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是(  )
A.3:5 B.9:25 C.5:3 D.25:9
【考点】相似三角形的性质
【分析】相似三角形的周长比等于对应的中线的比.
解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,
∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.
故选:C.
【点评】本题考查相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.
2.(2019年山东省淄博市(a卷))如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为(  )
A.2a B.a C.3a D.a
【考点】相似三角形的判定与性质
【分析】证明△ACD∽△BCA,根据相似三角形的性质求出△BCA的面积为4a,计算即可.
解:∵∠CAD=∠B,∠ACD=∠BCA,
∴△ACD∽△BCA,
∴=()2,即=,
解得,△BCA的面积为4a,
∴△ABD的面积为:4a﹣a=3a,
故选:C.
【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
3.(2019年浙江省杭州市)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则(  )
A.= B.= C.= D.=
【考点】相似三角形的判定与性质
【分析】先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.
解:∵DN∥BM,
∴△ADN∽△ABM,
∴=,
∵NE∥MC,
∴△ANE∽△AMC,
∴=,
∴=.
故选:C.
【点评】本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.
4.(2019年四川省凉山州)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=(  )
A.1:2 B.1:3 C.1:4 D.2:3
【考点】三角形的中位线,平行线分线段成比例
【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.
解:如图,过O作OG∥BC,交AC于G,
∵O是BD的中点,
∴G是DC的中点.
又AD:DC=1:2,
∴AD=DG=GC,
∴AG:GC=2:1,AO:OE=2:1,
∴S△AOB:S△BOE=2
设S△BOE=S,S△AOB=2S,又BO=OD,
∴S△AOD=2S,S△ABD=4S,
∵AD:DC=1:2,
∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,
∴S△AEC=9S,S△ABE=3S,

故选:B.
【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.
5.(2019年湖南省常德市)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是(  )
A.20 B.22 C.24 D.26
【考点】等腰三角形的性质,相似三角形的判定与性质
【分析】利用△AFH∽△ADE得到=()2=,所以S△AFH=9x,S△ADE=16x,则16x﹣9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.
解:如图,
根据题意得△AFH∽△ADE,
∴=()2=()2=
设S△AFH=9x,则S△ADE=16x,
∴16x﹣9x=7,解得x=1,
∴S△ADE=16,
∴四边形DBCE的面积=42﹣16=26.
故选:D.
【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.
6.(2019年四川省绵阳市)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=(  )
A. B. C. D.
【考点】矩形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,勾股定理
【分析】根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.
解:∵∠ADC=90°,CD=AD=3,
∴AC=3,
∵AB=5,BG=,
∴AG=,
∵AB∥DC,
∴△CEK∽△AGK,
∴==,
∴==,
∴==,
∵CK+AK=3,
∴CK=,
过E作EM⊥AB于M,
则四边形ADEM是矩形,
∴EM=AD=3,AM=DE=2,
∴MG=,
∴EG==,
∵=,
∴EK=,
∵∠HEK=∠KCE=45°,∠EHK=∠CHE,
∴△HEK∽△HCE,
∴==,
∴设HE=3x,HK=x,
∵△HEK∽△HCE,
∴=,
∴=,
解得:x=,
∴HK=,
故选:B.
【点评】本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.
7.(2019年四川省乐山市)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为(  )
A. B. C. D.
【考点】正方形的性质,相似三角形的判定与性质
【分析】如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.
解:如图,设BC=x,则CE=1﹣x
易证△ABC∽△FEC
∴===
解得x=
∴阴影部分面积为:S△ABC=××1=
故选:A.
【点评】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答
8.(2019年四川省乐山市)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于(  )
A. B.1 C. D.
【考点】相似三角形的判定和性质,菱形的性质,翻折变换(折叠问题)
【分析】先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.
解:在Rt△ABE中,∠B=30°,AB=,
∴BE=.
根据折叠性质可得BF=2BE=3.
∴CF=3﹣.
∵AD∥CF,
∴△ADG∽△FCG.
∴.
设CG=x,则,
解得x=﹣1.
故选:A.
【点评】本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.
9.(2019年四川省巴中市)如图?ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=(  )
A.2:3 B.3:2 C.9:4 D.4:9
【考点】平行四边形的性质,相似三角形的判定与性质
【分析】先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.
解:设DE=x,
∵DE:AD=1:3,
∴AD=3x,
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=3x,
∵点F是BC的中点,
∴CF=BC=x,
∵AD∥BC,
∴△DEG∽△CFG,
∴=()2=()2=,
故选:D.
【点评】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.
10.(2019年广西玉林市)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是(  )
A.5 B.6 C.7 D.8
【考点】三角形中位线定理,切线的性质,平行线分线段成比例定理
【分析】设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,MN最小值为OP﹣OF=,当N在AB边上时,M与B重合时,MN最大值=+1=,由此不难解决问题.
解:如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,
此时垂线段OP最短,PF最小值为OP﹣OF,
∵AC=4,BC=3,
∴AB=5
∵∠OPB=90°,
∴OP∥AC
∵点O是AB的三等分点,
∴OB=×5=,==,
∴OP=,
∵⊙O与AC相切于点D,
∴OD⊥AC,
∴OD∥BC,
∴==,
∴OD=1,
∴MN最小值为OP﹣OF=﹣1=,
如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,
MN最大值=+1=,
∴MN长的最大值与最小值的和是6.
故选:B.
【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点MN取得最大值、最小值时的位置,属于中考常考题型.
11.(2019年贵州省毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )
A.100cm2 B.150cm2 C.170cm2 D.200cm2
【考点】正方形的性质,相似三角形的判定与性质,勾股定理
【分析】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.
解:设AF=x,则AC=3x,FC=2x,
∵四边形CDEF为正方形,
∴EF=CF=2x,EF∥BC,
∴△AEF∽△ABC,
∴,
∴BC=6x,
在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,
解得,x=2,
∴AC=6,BC=12,
∴剩余部分的面积=×12×6﹣4×4=100(cm2),
故选A.
【点睛】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,图形的面积等,熟练掌握和灵活运用相关知识是解题的关键.
12.(2019年黑龙江省伊春市)如图,在平行四边形中,,,过点作边的垂线交的延长线于点,点是垂足,连接、,交于点.则下列结论:①四边形是正方形;②;③;④,正确的个数是(  )
A. B. C. D.
【考点】全等三角形的判定与性质,正方形的判定,相似三角形的性质
【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;
②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;
③根据BC= AB,DE=2AB进行推理说明便可;
④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.
解:①,,

四边形是平行四边形,





四边形是平行四边形,
, ,
四边形是正方形,故此题结论正确;
②,


,,
,故此小题结论正确;
③∵AB=CD=EC,

, ,

,故此小题结论正确;
④,
∴,
∴,



,故此小题结论正确.
故选:D.
【点睛】此题考查全等三角形的判定与性质,正方形的判定,三角形相似的性质,解题关键在于掌握各性质定义的运用
、填空题(本大题共6小题,每小题0分,共0分)
13.(2019年江苏省南京 )如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
【考点】线段垂直平分线的性质,角平分线的性质,平行线分线段成比例定理,勾股定理
【分析】作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN?EN=x,再由勾股定理得出方程,解方程即可得出结果.
解:作AM⊥BC于E,如图所示:
∵CD平分∠ACB,
∴,
设AC=2x,则BC=3x,
∵MN是BC的垂直平分线,
∴MN⊥BC,BN=CN=x,
∴MN∥AE,
∴,
∴NE=x,
∴BE=BN+EN=x,CE=CN?EN=x,
由勾股定理得:AE2=AB2?BE2=AC2?CE2,
即52?(x)2=(2x)2?(x)2,
解得:x=,
∴AC=2x=;
故答案为:.
【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
14.(2019年江苏省苏州市)如图,扇形中,.为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为___________
【考点】勾股定理,相似三角形的判定与性质
【分析】连接OP,设半径为r,在直角三角形OCP中利用勾股定理将CO用r表示,得到AC,又有△ACD∽△AOB,利用,解出r即可
解:连接OP,设半径为r,则OP=OA=OB=r,PC=PD+CD=3,
在直角三角形OCP中,,即得OC2=r2-9,得到OC=
得到AC=,又易知△ACD∽△AOB,所以,即,
得到,解出r=5;故填5
【点睛】本题主要考查勾股定理及相似三角形的证明与性质,本题关键在于能够连OP,表示出AC
15.(2019年山东省聊城市)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为   .
【考点】含30度角的直角三角形,三角形中位线定理,勾股定理,相似三角形的判定与性质
【分析】在Rt△ABC中,求出AB=2a,AC=a,在Rt△FEC中用a表示出FE长,并证明∠FEC=30°,从而EM转化到MA上,根据△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB可求周长.
解:在Rt△ABC中,∠B=60°,
∴∠A=30°,
∴AB=2a,AC=a.
∵DE是中位线,
∴CE=a.
在Rt△FEC中,利用勾股定理求出FE=a,
∴∠FEC=30°.
∴∠A=∠AEM=30°,
∴EM=AM.
△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=.
故答案为.
【点评】本题主要考查了30°直角三角形的性质、勾股定理、中位线定义,解决此题关键是转化三角形中未知边到已知边长的线段上.
16.(2019年天津市)如图,正方形纸片的边长为12,是边上一点,连接.折叠该纸片,使点落在上的点,并使折痕经过点,得到折痕,点在上.若,则的长为__________.
【考点】正方形与折叠,勾股定理,等腰三角形的性质,相似三角形的判定和性质
【分析】先根据勾股定理得出AE的长,然后根据折叠的性质可得BF垂直平分AG,再根据, △ABM∽△ADN求出AM 的长,从而得出AG,继而得出GE的长
解:在正方形中,∠BAD=∠D =,
∴∠BAM+∠FAM=
在Rt△ADE,
∵由折叠的性质可得
∴AB=BG,∠FBA=∠FBG
∴BF垂直平分AG,
∴AM=MG,∠AMB=
∴∠BAM+∠ABM=
∴∠ABM=∠FAM
∴△ABM∽△ADN
∴ ,

∴AM=,
∴AG=
∴GE=5-
【点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键
17.(2019年江苏省常州市)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=   .
【考点】等腰三角形的性质,矩形的性质,相似三角形的判定与性质、勾股定理
【分析】分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,则∠PFM=∠PFN=90°,由矩形的性质得出AB=CD,BC=AD=3AB=3,∠A=∠C=90°,得出AB=CD=,BD==10,证明△PDF∽△BDA,得出=,求出PF=,证出CE=2CD,由等腰三角形的性质得出MF=NF,∠PNF=∠DEC,证出△PNF∽△DEC,得出==2,求出NF=2PF=3,即可得出答案,
②MN为等腰△PMN的腰时,作PF⊥BD于F,由①得:PF=,MF=3,设MN=PN=x,则FN=3﹣x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
解:分两种情况:
①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:
则∠PFM=∠PFN=90°,
∵四边形ABCD是矩形,
∴AB=CD,BC=AD=3AB=3,∠A=∠C=90°,
∴AB=CD=,BD==10,
∵点P是AD的中点,
∴PD=AD=,
∵∠PDF=∠BDA,
∴△PDF∽△BDA,
∴=,即=,
解得:PF=,
∵CE=2BE,
∴BC=AD=3BE,
∴BE=CD,
∴CE=2CD,
∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,
∴MF=NF,∠PNF=∠DEC,
∵∠PFN=∠C=90°,
∴△PNF∽△DEC,
∴==2,
∴MF=NF=2PF=3,
∴MN=2NF=6,
②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:
由①得:PF=,MF=3,
设MN=PN=x,则FN=3﹣x,
在Rt△PNF中,()2+(3﹣x)2=x2,
解得:x=,即MN=,
综上所述,MN的长为6或,
故答案为:6或.
【点评】本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键.
18.(2019年四川省宜宾市)如图,△ABC和△CDE都是等边三角形,且点A.C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是   (写出所有正确结论的序号).
①AM=BN,②△ABF≌△DNF,③∠FMC+∠FNC=180°,④=
【考点】全等三角形的判定与性质,等边三角形的性质,相似三角形的判定与性质
【分析】①根据等边三角形性质得出AC=BC,CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根据SAS推出两三角形全等即可,
②根据∠ABC=60°=∠BCD,求出AB∥CD,可推出△ABF∽△DNF,找不出全等的条件,
③根据角的关系可以求得∠AFB=60°,可求得MFN=120°,根据∠BCD=60°可解题,
④根据CM=CN,∠MCN=60°,可求得∠CNM=60°,可判定MN∥AE,可求得==,可解题.
证明:①∵△ABC和△CDE都是等边三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD,
在△BCE和△ACD中,

∴△BCE≌△ACD(SAS),
∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,
在△DMC和△ENC中,

∴△DMC≌△ENC(ASA),
∴DM=EN,CM=CN,
∴AD﹣DM=BE﹣EN,即AM=BN,
②∵∠ABC=60°=∠BCD,
∴AB∥CD,
∴∠BAF=∠CDF,
∵∠AFB=∠DFN,
∴△ABF∽△DNF,找不出全等的条件,
③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,
∴∠AFB+∠ABC+∠BAC=180°,
∴∠AFB=60°,
∴∠MFN=120°,
∵∠MCN=60°,
∴∠FMC+∠FNC=180°,
④∵CM=CN,∠MCN=60°,
∴△MCN是等边三角形,
∴∠MNC=60°,
∵∠DCE=60°,
∴MN∥AE,
∴==,
∵CD=CE,MN=CN,
∴=,
∴=1﹣,
两边同时除MN得=﹣,
∴=.
故答案为①③④
【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.
、解答题(本大题共7小题,共0分)
19.(2019年广东省)如图,在中,点是边上的一点.
(1)请用尺规作图法,在内,求作,使,交于;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若,求的值.
【考点】作一个角等于已知角,平行线分线段成比例定理
【分析】(1)以点B为圆心,以任意长为半径画弧,交BA.BC于点F、G,以点D为圆心,以BF长为半径画弧,交DA于点M,再以M为圆心,以FG长为半径画弧,与前弧交于点H,过点D、H作射线,交AC于点E,由此即可得;
(2)由(1)可知DE//BC ,利用平行线分线段成比例定理进行求解即可.
解:(1)如图所示;
(2)∵,
∴.
∴.
【点睛】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.
20.(2019年湖北省荆门市)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E,再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.
【考点】相似三角形的应用
【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.
解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,
连接GF并延长交OE于点H,
∵GF∥AC,
∴△MAC∽△MFG,
∴,
即:,
∴,
∴OE=32,
答:楼的高度OE为32米.
【点评】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.
21.(2019年四川省凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.
(1)求证:BD2=AD?CD,
(2)若CD=6,AD=8,求MN的长.
【考点】相似三角形的判定与性质
【分析】(1)通过证明△ABD∽△BCD,可得,可得结论,
(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD?CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.
证明:(1)∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD

∴BD2=AD?CD
(2)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=AD?CD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2﹣CD2=12
∴MC2=MB2+BC2=28
∴MC=2
∵BM∥CD
∴△MNB∽△CND
∴,且MC=2
∴MN=
【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.
22.(2019年广西梧州市)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F,连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.
(1)求DE的长,
(2)求证:∠1=∠DFC.
【考点】全等三角形的判定与性质,矩形的性质,相似三角形的判定与性质
【分析】(1)由AD∥CF,AF平分∠DAC,可得∠FAC=∠AFC,得出AC=CF=5,可证出△ADE∽△FCE,则,可求出DE长,
(2)由△ADG∽△HBG,可求出DG,则,可得EG∥BC,则∠1=∠AHC,根据DF∥AH,可得∠AHC=∠DFC,结论得证.
(1)解:∵矩形ABCD中,AD∥CF,
∴∠DAF=∠ACF,
∵AF平分∠DAC,
∴∠DAF=∠CAF,
∴∠FAC=∠AFC,
∴AC=CF,
∵AB=4,BC=3,
∴==5,
∴CF=5,
∵AD∥CF,
∴△ADE∽△FCE,
∴,
设DE=x,则,
解得x=
∴,
(2)∵AD∥FH,AF∥DH,
∴四边形ADFH是平行四边形,
∴AD=FH=3,
∴CH=2,BH=5,
∵AD∥BH,
∴△ADG∽△HBG,
∴,
∴,
∴DG=,
∵DE=,
∴=,
∴EG∥BC,
∴∠1=∠AHC,
又∵DF∥AH,
∴∠AHC=∠DFC,
∠1=∠DFC.
【点评】本题考查了矩形的相关证明与计算,熟练掌握矩形的性质、平行四边形的判定与性质与相似三角形的性质与判定是解题的关键.
23.(2019年浙江省温州市)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.
(1)求证:四边形DCFG是平行四边形.
(2)当BE=4,CD=AB时,求⊙O的直径长.
【考点】平行四边形的判定与性质,垂径定理,圆周角定理,三角形的外接圆与外心,平行线分线段成比例
【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论,
(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.
(1)证明:连接AE,
∵∠BAC=90°,
∴CF是⊙O的直径,
∵AC=EC,
∴CF⊥AE,
∵AD是⊙O的直径,
∴∠AED=90°,
即GD⊥AE,
∴CF∥DG,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACD+∠BAC=180°,
∴AB∥CD,
∴四边形DCFG是平行四边形,
(2)解:由CD=AB,
设CD=3x,AB=8x,
∴CD=FG=3x,
∵∠AOF=∠COD,
∴AF=CD=3x,
∴BG=8x﹣3x﹣3x=2x,
∵GE∥CF,
∴,
∵BE=4,
∴AC=CE=6,
∴BC=6+4=10,
∴AB==8=8x,
∴x=1,
在Rt△ACF中,AF=10,AC=6,
∴CF==3,
即⊙O的直径长为3.
【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.
24.(2019年四川省乐山市)在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.
(1)如图1,当EF∥BC时,求证:+=1,
(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.
(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.
【考点】相似形综合题
【分析】(1)根据三角形重心定理和平行线分线段成比例解答即可,
(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可,
(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.
(1)证明:∵G是△ABC重心,
∴,
又∵EF∥BC,
∴,,
则,
(2)解:(1)中结论成立,理由如下:
如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,
则△BME∽△ANE,△CMF∽△ANF,
,,
∴,
又∵BM+CM=BM+CD+DM,
而D是BC的中点,即BD=CD,
∴BM+CM=BM+BD+DM=DM+DM=2DM,
∴,
又∵,
∴,
故结论成立,
(3)解:(1)中结论不成立,理由如下:
当F点与C点重合时,E为AB中点,BE=AE,
点F在AC的延长线上时,BE>AE,
∴,则,
同理:当点E在AB的延长线上时,,
∴结论不成立.
【点评】此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识,本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.
25.(2019年山东省泰安市)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.
(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形,
(2)若PE⊥EC,如图②,求证:AE?AB=DE?AP,
(3)在(2)的条件下,若AB=1,BC=2,求AP的长.
【考点】相似形综合题
【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.
(2)证明△AEP∽△DEC,可得=,由此即可解决问题.
(3)利用(2)中结论.求出DE,AE即可.
(1)证明:如图①中,
∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AE⊥BD,
∴∠AED=90°,
∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,
∴∠BAE=∠ADE,
∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,
∴∠AGP=∠APG,
∴AP=AG,
∵PA⊥AB,PF⊥BD,BP平分∠ABD,
∴PA=PF,
∴PF=AG,
∵AE⊥BD,PF⊥BD,
∴PF∥AG,
∴四边形AGFP是平行四边形,
∵PA=PF,
∴四边形AGFP是菱形.
(2)证明:如图②中,
∵AE⊥BD,PE⊥EC,
∴∠AED=∠PEC=90°,
∴∠AEP=∠DEC,
∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,
∴∠EAP=∠EDC,
∴△AEP∽△DEC,
∴=,
∵AB=CD,
∴AE?AB=DE?AP,
(3)解:∵四边形ABCD是矩形,
∴BC=AD=2,∠BAD=90°,
∴BD==,
∵AE⊥BD,
∴S△ABD=?BD?AE=?AB?AD,
∴AE=,
∴DE==,
∵AE?AB=DE?AP,
∴AP==.
【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
同课章节目录