第二章 §3
A级 基础巩固
一、选择题
1.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( D )
A. B.
C. D.
[解析] 由P(A∩)=P(B∩)得P(A)P()=P(B)·P(),即P(A)[1-P(B)]=P(B)[1-P(A)],
∴P(A)=P(B).又P(∩)=,
∴P()=P()=.
∴P(A)=.
2.三个元件T1,T2,T3正常工作的概率分别为,,,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是( A )
A. B.
C. D.
[解析] 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.
不发生故障的事件为(A2∪A3)∩A1,
∴不发生故障的概率为
P=P[(A2∪A3)∩A1]
=[1-P()·P()]·P(A1)
=(1-×)×=.故选A.
3.(2019·烟台高二检测)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( B )
A. B.
C. D.
[解析] P(A)==,P(AB)==.
由条件概率公式得P(B|A)==.故选B.
4.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( B )
A. B.
C. D.
[解析] 所求概率为×+×=或P=1-×-×=.
5.从甲袋内摸出1个白球的概率为,从乙袋内摸出1个白球的概率是,从两个袋内各摸1个球,那么概率为的事件是( C )
A.2个球都是白球 B.2个球都不是白球
C.2个球不都是白球 D.2个球中恰好有1个白球
[解析] 从甲袋内摸出白球与从乙袋内摸出白球两事件相互独立,故两个球都是白球的概率为P1=×=,
∴两个球不都是白球的概率为P=1-P1=.
6.(2019·烟台期末)袋中有大小形状都相同的4个黑球和2个白球.如果不放回地依次取出2球,那么在第1次取到的是黑球的条件下,第2次取到黑球的概率为( C )
A. B.
C. D.
[解析] 设事件A表示“第一次取出黑球”,事件B表示“第二次取出黑球”,
P(A)==,P(AB)=×=,
∴在第1次取到的是黑球的条件下,第2次取到黑球的概率为:
P(B|A)==.
故选C.
二、填空题
7.已知P(A)=0.3,P(B)=0.5,当事件A、B相互独立时,P(A∪B)=__0.65__,P(A|B)=__0.3__.
[解析] ∵A、B相互独立,∴P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65.
P(A|B)=P(A)=0.3.
8.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为__0.09__.
[解析] 乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P=(1-0.4)×0.5×(1-0.4)×0.5=0.09.
三、解答题
9.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,,两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率.
[解析] 由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为,.
设甲,乙两人所付的租车费用相同为事件A,
则P(A)=×+×+×=,
即甲、乙两人所付的租车费用相同的概率为.
10.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”,求:
(1)事件A发生的条件下事件B发生的概率;
(2)事件B发生的条件下事件A发生的概率.
[解析] 抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A的基本事件数为 6×2=12,
则P(A)==.
∵3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8,
∴事件B的基本事件总数为4+3+2+1=10.
∴P(B)==.
又4+5>8,4+6>8,6+3>8,6+4>8,6+5>8,6+6>8,
∴事件AB的基本事件数为6.
故P(AB)==.
由条件概率公式,得
(1)P(B|A)===.
(2)P(A|B)===.
B级 素养提升
一、选择题
1.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是( A )
A. B.
C. D.
[解析] 由已知逆时针跳一次的概率为,顺时针跳一次的概率为.则逆时针跳三次停在A上的概率为P1=××=,顺时针跳三次停在A上的概率为P2=××=.所以跳三次之后停在A上的概率为P=P1+P2=+=.
2.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( A )
A. B.
C. D.
[解析] 解法一:设A=“第一次取到二等品”,B=“第二次取得一等品”,则AB=“第一次取到二等品且第二次取到一等品”,∴P(A|B)===.
解法二:设一等品为a、b、c,二等品为A、B,
“第二次取到一等品”所含基本事件有(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c)共12个,其中第一次取到二等品的基本事件共有6个,∴所求概率为P==.
二、填空题
3.如图,四边形EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=____;
(2)P(B|A)=____.
[解析] (1)由题意可得,事件A发生的概率P(A)===.
(2)事件AB表示“豆子落在△EOH内”,则P(AB)===.故P(B|A)===.
4.已知随机变量ξ只能取三个值:x1,x2,x3,其概率依次成等差数列,则公差d的取值范围是____.
[解析] 由条件知,
,
∴P(ξ=x2)=,
∵P(ξ=xi)≥0,∴公差d取值满足-≤d≤.
三、解答题
5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.
(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;
(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.
[解析] (1)从甲箱中任取2个产品的事件数为
C==28,
这2个产品都是次品的事件数为C=3.
∴这2个产品都是次品的概率为.
(2)设事件A为“从乙箱中取出的一个产品是正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.
P(B1)==,P(B2)==,
P(B3)==,
P(A|B1)=,P(A|B2)=,P(A|B3)=,
∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=×+×+×=.
6.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为.甲、丙两台机床加工的零件都是一等品的概率为.
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
[解析] (1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.
由题设条件有
即
由①、③得P(B)=1-P(C),代入②得
27[P(C)]2-51P(C)+22=0.
解得P(C)=或 (舍去).
将P(C)=分别代入③、②可得P(A)=、
P(B)=,
即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是、、.
(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则
P(D)=1-P()=1-[1-P(A)][1-P(B)][1-P(C)]=1-××=.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.
C级 能力拔高
甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人考试合格的概率.
[解析] (1)设甲、乙两人考试合格的事件分别为A、B,则P(A)===,
P(B)===.
(2)解法一:因为事件A、B相互独立,所以甲、乙两人至少有一人考试合格的概率为
P=P(A)+P(B)+P(AB)=P(A)·P()+P()·P(B)+P(A)·P(B)=×+×+×=.
答:甲、乙两人至少有一人考试合格的概率为.
解法二:因为事件A、B相互独立,所以甲、乙两人考试均不合格的概率为
P( )=P()·P()=×=.
所以甲、乙两人至少有一人考试合格的概率为
P=1-P( )=1-=.
答:甲、乙两人至少有一人考试合格的概率为.
课件67张PPT。第 二 章概 率§3 条件概率与独立事件自主预习学案
1.条件概率
一般地,设A、B为两个事件,且P(A)>0,称P(B|A)=_________为在事件A发生的条件下事件B发生的条件概率.一般把P(B|A)读作_________________ ___________.
如果事件A发生与否,会影响到事件B的发生,显然知道了A的发生,研究事件B时,基本事件发生变化,从而B发生的概率也相应的发生变化,这就是____________要研究的问题.A发生的条件下B 发生的概率 条件概率 2.条件概率的性质
性质1:0≤P(B|A)≤1;
性质2:如果B和C是两个互斥事件,那么P(B∪C|A)=P(B|A)+P(C|A).
3.相互独立事件
(1)概念
①设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即_________________,则称两个事件A,B相互独立,并把这两个事件叫作________________.
②对于n个事件A1,A2,…,An,如果其中任一个事件发生的概率不受____________________的影响,则称n个事件A1,A2,…,An相互独立.P(B|A)=P(B) 相互独立事件 其他事件是否发生 B P(A)×P(B) 每个事件发生的概率积 B B 互动探究学案命题方向1 ?利用条件概率公式求条件概率 在一个口袋里装有大小相同的红色小球3个,蓝色小球5个,从中任取1球观察颜色,不放回,再任取一球,则
(1)在第一次取到红球条件下,第二次取到红球的概率为多少?
(2)在第一次取到蓝球的条件下,第二次取到红球的概率为多少?
(3)在第一次取到蓝球的条件下,第二次取到蓝球的概率为多少?典例 1
〔跟踪练习1〕
某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( )
A.0.8 B.0.75
C.0.6 D.0.45A 命题方向2 ?相互独立事件的判断 从一副扑克牌(52张)中任抽一张,记事件A为“抽得K”,记事件B为“抽得红牌”,记事件C为“抽到J”.判断下列每对事件是否相互独立?为什么?
(1)A与B;
(2)C与A.典例 2『规律总结』 两个事件是否相互独立的判断
(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.
(2)定义法:如果事件A,B同时发生的概率等于事件A发生的概率与事件B发生的概率的积,则事件A,B为相互独立事件.
(3)条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.〔跟踪练习2〕
下列事件中,哪些是互斥事件,哪些是相互独立事件?
(1)1 000张有奖销售的奖券中某1张奖券中一等奖与该张奖券中二等奖;
(2)甲、乙两人同时购买同一期的双色球彩票各一张,甲中奖与乙中奖;
(3)甲组3名男生、2名女生,乙组2名男生、3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;
(4)容器内盛有5个白乒乓球和3个黄乒乓球,从“8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.
[解析] (1)一张奖券不可能既中一等奖又中二等奖,即这两个事件不可能同时发生,故它们是互斥事件;
(2)由双色球的中奖规则可知,甲是否中奖对乙没有影响,反之亦然,故它们是相互独立事件;
(3)“从甲组中选出1名男生”这一事件是否发生对“从乙组中选出1名女生”这一事件发生的概率没有影响,反之亦然,所以它们是相互独立事件;命题方向3 ?求相互独立事件的概率 (2019·鹤岗高二检测)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率.典例 3
命题方向4 ?相互独立事件的综合应用 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列.典例 4『规律总结』 概率问题中的数学思想
(1)正难则反.灵活应用对立事件的概率关系(P(A)+P()=1)简化问题,是求解概率问题最常用的方法.
(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).
(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.
〔跟踪练习4〕
某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);[解析] (1)两地区用户满意度评分的茎叶图如图.
通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记CA1表示事件:“A地区用户的满意度等级为满意或非常满意”;
CA2表示事件:“A地区用户的满意度等级为非常满意”;
CB1表示事件:“B地区用户的满意度等级为不满意”;
CB2表示事件:“B地区用户的满意度等级为满意”;
则CA1与CB1相互独立,CA2与CB2相互独立,CB1与CB2互斥,C=CB1CA1∪CB2CA2.
P(C)=P(CB1CA1∪CB2CA2)
=P(CB1CA1)+P(CB2CA2)
=P(CB1)P(CA1)+P(CB2)P(CA2),正难则反的思想在求解概率问题中应用广泛,尤其是解概率问题的综合题中,出现“至少”或“至多”等事件的概率求解问题,如果从正面考虑,它们是诸多事件的和或积,求解过程繁杂,而且容易出错,但如果考虑“至少”或“至多”事件的对立事件往往会简单,其概率很容易求出,此时可逆向分析问题,先求出其对立事件的概率,再利用概率的和或积的互补公式求出原来事件的概率.正难则反的思想的应用 三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,求乙队连胜四局的概率.
[思路分析] 乙队每局胜利的事件是相互独立的,可由其公式计算概率.
典例 5
[解析] 设乙队连胜四局为事件A,有下列情况:
第一局中乙胜甲(A1),其概率为1-0.4=0.6,
第二局中乙胜丙(A2),其概率为0.5,
第三局中乙胜甲(A3),其概率为1-0.4=0.6,
第四局中乙胜丙(A4),其概率为0.5,
因各局比赛中的事件相互独立,故乙队连胜四局的概率为P(A)=P(A1A2A3A4)=0.62·0.52=0.09.
『规律总结』 (1)求复杂事件的概率一般可分三步进行:①列出题中涉及的各个事件,并用适当的符号表示它们;②理清各事件之间的关系,列出关系式;③根据事件之间的关系准确地运用概率公式进行计算.
(2)直接计算符合条件的事件个数较复杂,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率.〔跟踪练习5〕
在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.
[解析] 如图所示,分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率.典例 6误认为条件概率P(B|A)与积事件的概率P(AB)相同 [辨析] 应注意P(AB)是事件A和B同时发生的概率,而P(B|A)是在事件A已经发生的条件下事件B发生的概率.
1.下列事件A,B是相互独立事件的是 ( )
A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”
B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A=“第一次摸到白球”,B=“第二次摸到白球”
C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”
D.A=“一个灯泡能用1 000小时”,B=“一个灯泡能用2 000小时”A
[解析] 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是相互独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,其结果具有唯一性,A,B应为互斥事件;D中事件B受事件A的影响.故选A.
B A C 课时作业学案