第三章 §2
A级 基础巩固
一、选择题
1.给出下列实际问题:
①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有( B )
A.①②③ B.②④⑤
C.②③④⑤ D.①②③④⑤
[解析] 独立性检验是判断两个分类变量是否有关系的方法,而①③都是概率问题,不能用独立性检验.
2.在2×2列联表中,两个比值____________相差越大,两个分类变量之间的关系越强( A )
A.与 B.与
C.与 D.与
[解析] 与相差越大,说明ad与bc相差越大,两个分类变量之间的关系越强.
3.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是( D )
A.三维柱形图 B.二维条形图
C.等高条形图 D.独立性检验
[解析] 前三种方法只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由K2=算得,
K2=≈7.8.
附表:
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
参照附表,得到的正确结论是( A )
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
[解析] 根据独立性检验的定义,由K2≈7.8>6.635可知,有99%以上把握认为“爱好该项运动与性别有关”.
5.某调查机构调查教师工作压力大小的情况,部分数据如表:
喜欢教师职业
不喜欢教师职业
总计
认为工作压力大
53
34
87
认为工作压力不大
12
1
13
总计
65
35
100
则推断“工作压力大与不喜欢教师职业有关系”,这种推断犯错误的概率不超过( B )
A.0.01 B.0.05
C.0.10 D.0.005
[解析] K2=
=
≈4.9>3.841,
因此,在犯错误的概率不超过0.05的前提下,认为工作压力大与不喜欢教师职业有关系.
6.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( C )
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
A.① B.①③
C.③ D.②
[解析] ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A、B,③正确.排除D,选C.
二、填空题
7.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:
专业性别
非统计专业
统计专业
男
13
10
女
7
20
为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
K2=≈4.844,
因为K2≥3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为__5%__.
[解析] ∵k>3.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.
8.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2=7.63,根据这一数据分析,有__99%__的把握说,打鼾与患心脏病是__有关__的.(有无、无关)
[解析] ∵K2=7.63,∴K2>6.635,
因此,有99%的把握说,打鼾与患心脏病是有关的.
三、解答题
9.某学校对手工社、摄影社两个社团招新报名的情况进行调查,得到如下的列联表:
手工社
摄影社
总计
女生
6
男生42
总计
30
60
(1)请填写上表中所空缺的五个数字;
(2)已知报名摄影社的6名女生中甲、乙、丙三人来自于同一个班级,其他再无任意两人同班情况.现从此6人中随机抽取2名女生参加某项活动,则被选到两人同班的概率是多少?
(3)能否在犯错误的概率不超过0.05的前提下,认为学生对这两个社团的选择与“性别”有关系?
注:K2=.
P(K2≥k0)
0.25
0.15
0.10
0.05
0.025
k0
1.323
2.072
2.706
3.841
5.024
[解析] (1)
手工社
摄影社
总计
女生
12
6
18
男生
18
24
42
总计
30
30
60
(2)所求概率为P==.
(3)K2=
==≈2.857<3.841,
所以,不能在犯错误的概率不超过0.05的前提下,认为学生对这两个社团的选择与“性别”有关系.
10.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意
不满意
男顾客
40
10
女顾客
30
20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:K2=.
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
[解析] (1)由调查数据,男顾客中对该商场服务满意的比率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2)K2的观测值k=≈4.762.
由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
B级 素养提升
一、选择题
1.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一条直线的回归方程为=3-5x,变量x增加一个单位时,y平均增加5个单位;
③线性回归直线=x+必过点(,);
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( B )
A.0 B.1
C.2 D.3
本题可以参考独立性检验临界值表:
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
k0
0.455
0.708
1.323
2.072
2.706
P(K2≥k0)
0.05
0.025
0.010
0.005
0.001
k0
3.841
5.024
6.635
7.879
10.828
[解析] 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程=3-5x,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归直线=x+必过点(,),③正确;因为K2=13.079>10.828,故有99%的把握确认这两个变量有关系,④正确,故选B.
2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( D )
表1
成绩
性别
不及格
及格
总计
男
6
14
20
女
10
22
32
总计
16
36
52
表2
视力
性别
好
差
总计
男
4
16
20
女
12
20
32
总计
16
36
52
表3
智商
性别
偏高
正常
总计
男
8
12
20
女
8
24
32
总计
16
36
52
表4
阅读
性别
量
丰富
不丰富
总计
男
14
6
20
女
2
30
32
总计
16
36
52
A.成绩 B.视力
C.智商 D.阅读量
[解析] A中,K2==;
B中,K2==;
C中,K2==;
D中,K2==.
因此阅读量与性别相关的可能性最大,所以选D.
二、填空题
3.某高校《统计初步》课程的教师随机调查了选该课程的学生的一些情况,具体数据如下:
专业
性别
非统计专业
统计专业
男
13
10
女
7
20
为了判断主修统计专业是否与性别有关系,根据表中数据,得到K2=≈4.844>3.841,所以断定主修统计专业与性别有关系,那么这种判断出错的可能性约是__5%__.
[解析] ∵P(k2≥3.841)≈0.05,故判断出错的可能性为5%.
4.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天内的结果如下表所示:
死亡
存活
合计
第一种剂量
14
11
25
第二种剂量
6
19
25
合计
20
30
50
进行统计分析时的统计假设是__小白鼠的死亡与电离辐射的剂量无关__.
[解析] 根据独立性检验的基本思想,可知类似于反证法,即要确认“两个分量有关系”这一结论成立的可信程度,首先假设该结论不成立.对于本题,进行统计分析时的统计假设应为“小白鼠的死亡与电离辐射的剂量无关”.
三、解答题
5.(2019·青岛高二检测)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计,其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:
(1)根据以上两个直方图完成下面的2×2列联表:
成绩
性别
优秀
不优秀
合计
男生
女生
总计
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系.
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.
[解析] (1)
成绩
性别
优秀
不优秀
合计
男生
13
10
23
女生
7
20
27
总计
20
30
50
(2)由(1)中表格的数据知,
K2=≈4.844.
∵K2≈4.844>3.841,∴有95%的把握认为学生的数学成绩与性别之间有关系.
(3)成绩在[130,140]的学生中男生有50×0.008×10=4人,女生有50×0.004×10=2人;
从6名学生中任取2人,共有C=15种选法;
若选取的都是男生,共有C=6种选法;
故所求事件的概率P=1-=.
6.下表是某地区的一种传染病与饮用水的调查表:
得病
不得病
总计
干净水
52
466
518
不干净水
94
218
312
总计
146
684
830
(1)这种传染病是否与饮用水的卫生程度有关?请说明理由;
(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人,按此样本数据分析这种传染病是否与饮用水有关,并比较两种样本在反映总体时的差异.
[解析] (1)假设H0:传染病与饮用水无关.把表中数据代入公式得:K2的观测值k=≈54.21.因为54.21>10.828,所以拒绝H0.因此在犯错误的概率不超过0.001的前提下认为该地区这种传染病与饮用不干净水有关.
(2)依题意得2×2列联表如下:
得病
不得病
总计
干净水
5
50
55
不干净水
9
22
31
总计
14
72
86
此时,K2的观测值k=≈5.785.由于5.785>5.024,所以在犯错误的概率不超过0.025的前提下认为该种传染病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中犯错误的概率不超过0.001,(2)中犯错误的概率不超过0.025.
C级 能力拔高
(2018·全国卷Ⅲ理,18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m
不超过m
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:K2=,
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
.
[解析] (1)解:第二种生产方式的效率更高.
理由如下:
(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.
(ⅱ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.
(ⅲ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需平均时间高于80分钟;用第二种生产方式的工人完成生产任务所需平均时间低于80分钟.因此第二种生产方式的效率更高.
(ⅳ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.
(2)解:由茎叶图知m==80.
列联表如下:
超过m
不超过m
第一种生产方式
15
5
第二种生产方式
5
15
(3)解:因为K2==10>6.635,所以有99%的把握认为两种生产方式的效率有差异.
课件53张PPT。第 三 章统计案例§2 独立性检验自主预习学案饮用水的质量是人类普遍关心的问题.据统计,饮用优质水的518人中,身体状况优秀的有466人,饮用一般水的312人中,身体状况优秀的有218人.
人的身体健康状况与饮用水的质量之间有关系吗?
当数据量较大时,在统计中,用以下结果对变量的独立性进行判断;
(1)当_____________时,没有充分的证据判定变量A、B有关联,可以认为变量A、B是没有关联的;
(2)当_____________时,有90%的把握判定变量A、B有关联;
(3)当_____________时,有95%的把握判定变量A、B有关联;
(4)当_____________时,有99%的把握判定变量A、B有关联.K2≤2.706
K2>2.706
K2>3.841
K2>6.635 C
2.对于研究两个分类变量A与B关系的统计量K2,下列说法正确的是 ( )
A.K2越大,说明“A与B有关系”的可信度越小
B.K2越小,说明“A与B有关系”的可信度越小
C.K2越大,说明“A与B无关”的程度越大
D.K2接近于0,说明“A与B无关”的程度越小
B 3.(2018·泸州模拟)某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:C B 互动探究学案命题方向1 ?利用等高条形图判断两个分类变量是否相关典例 1[解析] 等高条形图如图所示:
其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.
由图可以直观地看出铅中毒病人与对照组相比较尿棕色素为阳性差异明显,因此铅中毒病人与尿棕色素为阳性有关系.〔跟踪练习1〕
某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.[解析] 作列联表如下:相应的等高条形图如图所示:
图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例,从图中可以看出考前紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例高,可以认为考前紧张与性格类型有关.命题方向2 ?独立性检验的应用 某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率的作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:典例 2[思路分析] (1)由表格统计出甲、乙两个班的总人数和优秀人数,求出优秀率;
(2)依统计数据填写列联表,代入公式计算K2的估计值,查表下结论.
〔跟踪练习2〕
为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.能否在犯错误的概率不超过0.1的前提下,认为“学生选报文、理科与对外语的兴趣有关”?独立性检验的思想来自于统计上的假设检验思想,它与反证法类似.假设检验和反证法都是先假设结论不成立,然后根据是否能够推出“矛盾”来断定结论是否成立.但二者“矛盾”的含义不同,反证法中的“矛盾”是指一个不符合逻辑的事情发生,而假设检验中的“矛盾”是指一个小概率事件发生,即在结论不成立的假设下,推出有利于结论成立的小概率事件发生.我们知道小概率事件在一次试验中通常是不会发生的,若在实际中这个事件发生了,说明保证这个事件为小概率事件的条件有问题,即结论在很大的程度上应该成立.独立性检验的综合应用 某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数),结果如下表:
表1:A类工人生产能力的频数分布表典例 5[思路分析] (1)确定x、y的值,可用分层抽样解决;(2)判断在规定条件下工人的生产能力与工人的类别是否有关系可通过独立性检验解决.
由已知工厂中A、B类工人的人数和抽取工人数,进行分层抽样,可直接计算A、B类工人样本数;由表1、表2可得列联表,计算K2的观测值k与临界值可比较.
(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分);
(2)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异”? 有甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表
班级与成绩列联表
试问能有多大把握认为“成绩与班级有关系”?典例 4没有准确掌握公式中参数的含义致误[辨析] 由于对2×2列联表中a、b、c、d的位置不清楚,在代入公式时代错了数值导致计算结果的错误.[点评] 独立性检验中,参数K2公式复杂计算量大,要弄清公式特点熟记公式,小心计算避免粗心致误.根据以上数据可得出 ( )
A.种子是否经过处理与是否生病有关
B.种子是否经过处理与是否生病无关
C.种子是否经过处理决定是否生病
D.有90%的把握认为种子经过处理与生病有关B 1.在某次飞行航程中遭遇恶劣气候,55名男乘客中有24名晕机,34名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用的数据分析方法应是 ( )
A.频率分布直方图 B.回归分析
C.独立性检验 D.用样本估计总体
[解析] 根据题意,结合题目中的数据,列出2×2列联表,求出K2观测值,对照数表可得出概率结论,这种分析数据的方法是独立性检验.C 是 4.514 在犯错误的概率不超过0.05的前提下,我们认为是否看电视与性别有关 课 时 作 业 学 案