第一章 常用逻辑用语教案(打包10份)

文档属性

名称 第一章 常用逻辑用语教案(打包10份)
格式 zip
文件大小 584.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-11-23 19:07:00

文档简介










第一课时 1.1.1 命题及其关系(一)

教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.
教学重点:命题的改写.
教学难点:命题概念的理解.
教学过程:
一、复习准备:
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3;
(3)3吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子.
二、讲授新课:
1. 教学命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.
上述6个语句中,(1)(2)(4)(5)(6)是命题.
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition).
上述5个命题中,(2)是假命题,其它4个都是真命题.
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数是素数,则是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5);
(6)平面内不相交的两条直线一定平行;
(7)明天下雨.
(学生自练个别回答教师点评)
④探究:学生自我举出一些命题,并判断它们的真假.
2. 将一个命题改写成“若,则”的形式:
①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.
②试将例1中的命题(6)改写成“若,则”的形式.
③例2:将下列命题改写成“若,则”的形式.
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等.
(学生自练个别回答教师点评)
3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.
三、巩固练习:
1. 练习:教材 P4 1、2、3       
2. 作业:教材P9  第1题





















第二课时 1. 1.2 命题及其关系(二)
教学目标
知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.
过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.
难点:(1)命题的否定与否命题的区别; (2)写出原命题的逆命题、否命题和逆否命题;
(3)分析四种命题之间相互的关系并判断命题的真假.
教学过程:
一、复习准备:
指出下列命题中的条件与结论,并判断真假:
(1)矩形的对角线互相垂直且平分;
(2)函数有两个零点.
二、讲授新课:
问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数(2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.
1. 教学四种命题的概念:
交换原命题的条件和结论,所得的命题就是它的逆命题:
同时否定原命题的条件和结论,所得的命题就是它的否命题;
交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.
强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
  原命题   逆命题   否命题   逆否命题
 若,则  若,则 若,则 若,则
①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.
(师生共析学生说出答案教师点评)
②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)同位角相等,两直线平行;
(2)正弦函数是周期函数;
(3)线段垂直平分线上的点与这条线段两个端点的距离相等.
(学生自练个别回答教师点评)
2. 教学四种命题的相互关系:
①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.
②四种命题的相互关系图:

③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.
④结论一:原命题与它的逆否命题同真假;
结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.
⑤例2 若,则.(利用结论一来证明)(教师引导学生板书教师点评)
3. 小结:四种命题的概念及相互关系.
三、巩固练习:
1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.
(1)函数有两个零点;(2)若,则;
(3)若,则全为0;(4)全等三角形一定是相似三角形;
(5)相切两圆的连心线经过切点.
2. 作业:教材P9页  第2(2)题    P10页  第3(1)题





















1.2.1充分条件与必要条件
项目 内容
课题 1.2.1充分条件与必要条件(1课时) 修改与 创新
教学 目标 1. 1.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件. 2.过程与方法:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力. 3.情感、态度与价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、难点 重点:充分条件、必要条件的概念. (解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.) 难点:判断命题的充分条件、必要条件。
教学 准备 多媒体课件
教学过程 学生探究过程:1.练习与思考写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x > a2 + b2,则x > 2ab, (2)若ab = 0,则a = 0.学生容易得出结论;命题(1)为真命题,命题(2)为假命题.置疑:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.2.给出定义  命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立.换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件.  一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作:p?q.定义:如果命题“若p,则q”为真命题,即p ? q,那么我们就说p是q的充分条件;q是p必要条件.上面的命题(1)为真命题,即x > a2 + b2 ? x > 2ab,所以“x > a2 + b2 ”是“x > 2ab”的充分条件,“x > 2ab”是“x > a2 + b2” "的必要条件.3.例题分析:例1:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件? (1)若x =1,则x2 - 4x + 3 = 0;(2)若f(x)= x,则f(x)为增函数; (3)若x为无理数,则x2为无理数. 分析:要判断p是否是q的充分条件,就要看p能否推出q. 解略. 例2:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件? 若x = y,则x2 = y2; 若两个三角形全等,则这两个三角形的面积相等;(3)若a >b,则ac>bc. 分析:要判断q是否是p的必要条件,就要看p能否推出q. 解略.4、巩固巩固:P12 练习第1、2、3、4题
板书设计 1.2.1充分条件与必要条件充分、必要的定义. 在“若p,则q”中,若p?q,则p为q的充分条件,q为p的必要条件.
教学反思 学生对于充分条件和必要条件的理解,需要经过一定时间的体会,先给学生对于充分条件和必要条件一个准确的规范表述,及对充分条件和必要条件进行判断的方法及步骤,教学中不急于求成,而在后续的教学中经常借助这些概念表达,阐述和分析数学问题。
















§1.2.1 充分条件与必要条件
【学情分析】:
充分条件、必要条件和充要条件是基本的数学逻辑用语,数学学科中大量的命题用它来叙述。是上一课时命题的真假的进一步的深化,也是高考的重点内容。在此引入概念,对于这几个概念的准确需要一定的时间的体会和思考,对于这些概念的运用和掌握有赖于后续的学习,学习中不要急于求成,而应该在后续的教学中经常借助于这些概念去表达、阐述和分析。
【教学目标】:
(1)知识目标:
正确理解充分条件、必要条件和充要条件的概念;会判断命题的充分不必要条件、必要不充分条件,充要条件。
(2)过程与方法目标:
利用多媒体教学,多让学生举例讨论,教学方法较灵活,学生参与意识强,培养他们的良好的思维品质。
(3)情感与能力目标:
通过学生的举例,培养他们的辨析能力;利用命题的等价性,培养他们的分析问题、解决问题的能力和逻辑思维能力。
【教学重点】:
理解充分不必要条件、必要不充分条件和充要条件的概念。
【教学难点】:
关于充分不必要条件、必要不充分条件和充要条件的判断。
【教学过程设计】:
教学环节 教学活动 设计意图
引入 课题 问题1:写出下列命题的条件和结论,并说明条件和结论有什么关系? (1)若x > a2 + b2,则x > 2ab (2)若ab = 0,则a = 0(3)两直线平行,同位角相等。 由问题引入概念.
二、知识 建构 定义:命题“若p则q”为真命题,即p => q,就说p是q的充分条件;q是p必要条件。则有如下情况:①若 ,但 ,则 是 的充分但不必要条件; ②若,但 ,则 是 的必要但不充分条件;③若 , 且 ,则 是 的充要条件; ④若 ,且 ,则 是 的充要条件 ⑤若 ,且 ,则 是 的既不充分也不必要条件. 由师生合作完成定义下的五种不同情况,培养学生分析和概括的能力。
三.体验与运用 例1、 指出下列各组命题中, 是 的什么条件(在“充分而不必要条件”“必要而不充分条件”“充要条件”“既不充分也不必要条件”中选出一种)。 (1) :四边形对角线互相平分; :四边形是矩形 (2): ; :抛物线过原点。 (3) : ; :。 (4):方程 有一根为1; (5) : ; :方程 有实根。 解:(1)四边形对角线互相平分 四边形是矩形。四边形是矩形 四边形对角线互相平分。所以 是 的必要而不充分条件。 (2) 抛物线 过原点,抛物线 过原点 。 所以 是 的充要条件。(3) 。 所以 是 的充分而不必要条件。 (4)方程 有一根为 。  方程 有一根为1。 所以 是 的充要条件。 (5) 方程 有实根,方程 有实根 。所以 是 的充分而不必要条件。  所以 是 的充分而不必要条件。 由例1通过师生的共同合作加深对定义的理解。引导学生对于较为抽象的命题应转化条件或结论的等价形式。
四、巩固 练习 练习、下列命题中,p是q的什么条件?(2)p:m,n是偶数 q:两个整数的和是偶数(3)p: x = y, q: x2 = y2(4)p:两个三角形全等,q:这两个三角形的面积相等;(5)p: a >b, q:ac> bc (7)p:两条直线不平行,q:这两条直线是异面直线. 及时运用新知识,巩固练习,让学生体验成功,为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习
五、学生 探究 问题2:P是q的什么条件?从中能发现什么规律?pq 练习:P12,第2题。 例2、 若甲是乙的充分条件,乙是丙的充要条件,丙是丁的必要条件,丁是乙的必要条件,问甲是丙的什么条件?乙是丁的什么条件?  解:由题意,分析如下图所示。   根据图示得:甲是丙的充分条件,乙是丁的充要条件. 若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断
六、小结与反思 1充分、必要、充要条件的定义。 在“若p则q”中 (1)pq,(p为q的充分条件,q为p的必要条件) (2)qp,(p为q的充要条件,q为p的充要条件) 2给定两个条件p ,q,要判断p是q的什么条件,也可 考虑集合:A={X|X满足条件q},B={X|X满足条件p} 若 ,则 是 的充分条件; ②若 ,则 是 的必要条件; ③若 ,则 是 的充要条件; ④若 ,且 ,则 是 的既不必要也不充分条件. 通过学生自己的小结,将新知识系统化、重点化。通过学生的反思,使学生意识重点和难点,提高学习效率。

课后练习
1.在如图的电路图中,“开关A的闭合”是“灯泡B亮”的________条件(   )
A.充分非必要 B.必要非充分
C.充要 D.既非充分又非必要
2.设a∈R,则a>1是<1( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
3.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是( )
A.m>1,n<-1 B.mn<0
C.m>0,n<0 D.m<0,n<0
4、四边形为菱形的必要条件是( )
A.对角线相等, B.对角线互相垂直,
C.对角线相等且垂直, D.对角线互相垂直且平分。
5.设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6、如果都是实数,那么p:,是q:关于的方程有一正根和一负根的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
7.若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
8.若条件p:a>4,q:5<a<6,则p是q的______________.
9若p:f(x) = x,q: f(x)为增函数则p是q的______________.
10.用充分、必要条件填空:
①x≠1且y≠2是x+y≠3的
②x≠1或y≠2是x+y≠3的
11.已知p∶x2-8x-20>0,q∶x2-2x+1-a2>0。若p是q的充分而不必要条件,求正实数a的取值范围.
12:已知命题p: {x|-2 < x < 10 },q: x2 — 2x + 1— m2 < 0 (m>o),若﹁p是﹁q的必要不充分条件,求实数m的范围
参考答案:
1. B 2.A 3.B 4.B 5.A 6. C 7. A;
8 必要但不充分条件;
9. 充分不必要条件
10.①既不充分也不必要条件,②必要但不充分条件(提示:画出集合图或考虑逆否命题).

11.解:p∶A={x|x<-2,或x>10},q∶B={x|x<1-a,或x>1+a,a>0
如图,依题意,pq,但q不能推出p,说明AB,则有
解得0<a≤3.
12.解:由于是的必要不充分条件,则p是q的充分不必要条件
于是有























《1.2.2 充要条件》


(一)教学目标
1.知识与技能目标:
正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.
正确判断充分不必要条件、 必要不充分条件、充要条件、 既不充分也不必要条件.
通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.
2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
3. 情感、态度与价值观:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
(二)教学重点与难点
重点:1、正确区分充要条件;2、正确运用“条件”的定义解题
难点:正确区分充要条件.
教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
(三)教学过程
学生探究过程:
1.思考、分析
已知p:整数a是2的倍数;q:整数a是偶数.
请判断: p是q的充分条件吗?p是q的必要条件吗?
分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.
易知:pq,故p是q的充分条件;
又q p,故p是q的必要条件.
此时,我们说, p是q的充分必要条件
2.类比归纳
一般地,如果既有pq ,又有qp 就记作 p q.
此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.
概括地说,如果p q,那么p 与 q互为充要条件.
3.例题分析
例1:下列各题中,哪些p是q的充要条件?
p:b=0,q:函数f(x)=ax2+bx+c是偶函数;
p:x > 0,y > 0,q: xy> 0;
p: a > b ,q: a + c > b + c;
p:x> 5, ,q: x > 10
p: a > b ,q: a2 > b2
分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.
解:命题(1)和(3)中,pq ,且qp,即p q,故p 是q的充要条件;
命题(2)中,pq ,但q  p,故p 不是q的充要条件;
命题(4)中,pq ,但qp,故p 不是q的充要条件;
命题(5)中,pq ,且qp,故p 不是q的充要条件;
4.类比定义
一般地,
若pq ,但q  p,则称p是q的充分但不必要条件;
若pq,但q  p,则称p是q的必要但不充分条件;
若pq,且q  p,则称p是q的既不充分也不必要条件.
在讨论p是q的什么条件时,就是指以下四种之一:
  ①若pq ,但q  p,则p是q的充分但不必要条件;
  ②若qp,但p  q,则p是q的必要但不充分条件;
  ③若pq,且qp,则p是q的充要条件;
  ④若p  q,且q  p,则p是q的既不充分也不必要条件.
5.巩固练习:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.


6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可.
证明过程略.


例3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?

7.教学反思:
充要条件的判定方法
如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是.
8.作业:P14:习题1.2A组第1(3)(2),2(3),3题
典型问题要重点讲解






















1.3.1且 1.3.2或
项目 内容
课题 1.3.1且 1.3.2或(1课时) 修改与创新
教学 目标 1.知识与技能目标: 掌握逻辑联结词“或、且”的含义 正确应用逻辑联结词“或、且”解决问题 掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养. 3.情感态度价值观目标: 激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
教学重、难点 重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。 难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.
教学 准备 多媒体课件
教学过程 学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。 为叙述简便,今后常用小写字母p,q,r,s,…表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系? (1)①12能被3整除; ②12能被4整除; ③12能被3整除且能被4整除。 (2)①27是7的倍数; ②27是9的倍数; ③27是7的倍数或是9的倍数。 学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。 问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子? 例如:命题p:菱形的对角线相等且菱形的对角线互相平分。 命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。3、归纳定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q 读作“p且q”。 一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。 命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或” 字与下面两个命题中的“且” 字与“或” 字的含义相同吗?(1)若 x∈A且x∈B,则x∈A∩B。 (2)若 x∈A或x∈B,则x∈A∪B。 定义中的“且”字与“或” 字与两个命题中的“且” 字与“或” 字的含义是类似。但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时兼有,同时满足, 逻辑联结词“或”与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能. 说明:符号“∧”与“∩”开口都是向下,符号“∨”与“∪”开口都是向上。注意: “p或q”,“p且q”,命题中的“p”、“q”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p”,“q”是一个命题的条件和结论两个部分. 4、命题“p∧q”与命题“p∨q”的真假的规定你能确定命题“p∧q”与命题“p∨q”的真假吗?命题“p∧q”与命题“p∨q”的真假和命题p,q的真假之间有什么联系? 引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。 第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。pqp∧q 真真真 真假假 假真假 假假假 pqp∨q 真真真 真假真 假真真 假假假 (即一假则假) (即一真则真) 一般地,我们规定: 当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。 5、例题例1:将下列命题分别用“且”与“或” 联结成新命题“p∧q” 与“p∨q”的形式,并判断它们的真假。 (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。 (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分; (3)p:35是15的倍数,q:35是7的倍数. 解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成 平行四边形的对角线互相平分且相等. p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成 平行四边形的对角线互相平分或相等. 由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题. (2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成 菱形的对角线互相垂直且平分. p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成 菱形的对角线互相垂直或平分. 由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题. (3)p∧q:35是15的倍数且35是7的倍数. 也可简写成 35是15的倍数且是7的倍数. p∨q: 35是15的倍数或35是7的倍数. 也可简写成 35是15的倍数或是7的倍数. 由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题. 说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变. 例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。 (1)1既是奇数,又是素数; (2)2是素数且3是素数; (3)2≤2. 解略. 例3、判断下列命题的真假; (1)6是自然数且是偶数 (2)?是A的子集且是A的真子集; (3)集合A是A∩B的子集或是A∪B的子集; (4)周长相等的两个三角形全等或面积相等的两个三角形全等.解略.6.巩固练习 :P20 练习第1 , 2题
板书设计 1.3.1且 1.3.2或逻辑联结词“或、且”的含义 应用逻辑联结词“或、且”解决问题 真值表并会应用真值表解决问题 pqP∧qP∨q 真真真真 真假假真 假真假真 假假假假
教学反思 本节帮助学生正确使用常用逻辑用语,更好地理解数学内容中的逻辑关系,体会逻辑用语在表达和论述中的作用,利用这些逻辑用语准确地表达数学内容。本节学习“且”,“或”两个逻辑用语,掌握用这两个联结词组成的真假的判断。






















1.3.1且 1.3.2或
项目 内容
课题 1.3.1且 1.3.2或(1课时) 修改与创新
教学 目标 1.知识与技能目标: 掌握逻辑联结词“或、且”的含义 正确应用逻辑联结词“或、且”解决问题 掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养. 3.情感态度价值观目标: 激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
教学重、难点 重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。 难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.
教学 准备 多媒体课件
教学过程 学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。 为叙述简便,今后常用小写字母p,q,r,s,…表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系? (1)①12能被3整除; ②12能被4整除; ③12能被3整除且能被4整除。 (2)①27是7的倍数; ②27是9的倍数; ③27是7的倍数或是9的倍数。 学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。 问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子? 例如:命题p:菱形的对角线相等且菱形的对角线互相平分。 命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。3、归纳定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作 p∧q 读作“p且q”。 一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。 命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或” 字与下面两个命题中的“且” 字与“或” 字的含义相同吗? (1)若 x∈A且x∈B,则x∈A∩B。 (2)若 x∈A或x∈B,则x∈A∪B。 定义中的“且”字与“或” 字与两个命题中的“且” 字与“或” 字的含义是类似。但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时兼有,同时满足, 逻辑联结词“或”与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能. 说明:符号“∧”与“∩”开口都是向下,符号“∨”与“∪”开口都是向上。注意:“p或q”,“p且q”,命题中的“p”、“q”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p”,“q”是一个命题的条件和结论两个部分. 4、命题“p∧q”与命题“p∨q”的真假的规定你能确定命题“p∧q”与命题“p∨q”的真假吗?命题“p∧q”与命题“p∨q”的真假和命题p,q的真假之间有什么联系? 引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。 第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。pqp∧q 真真真 真假假 假真假 假假假 pqp∨q 真真真 真假真 假真真 假假假 (即一假则假) (即一真则真) 一般地,我们规定: 当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。 5、例题例1:将下列命题分别用“且”与“或” 联结成新命题 “p∧q” 与“p∨q”的形式,并判断它们的真假。 (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。 (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分; (3)p:35是15的倍数, q:35是7的倍数. 解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成 平行四边形的对角线互相平分且相等. p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成 平行四边形的对角线互相平分或相等. 由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题. (2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成 菱形的对角线互相垂直且平分. p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成 菱形的对角线互相垂直或平分. 由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题. (3)p∧q:35是15的倍数且35是7的倍数. 也可简写成 35是15的倍数且是7的倍数. p∨q: 35是15的倍数或35是7的倍数. 也可简写成 35是15的倍数或是7的倍数. 由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题. 说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变. 例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。 (1)1既是奇数,又是素数; (2)2是素数且3是素数; (3)2≤2. 解略. 例3、判断下列命题的真假; (1)6是自然数且是偶数 (2)?是A的子集且是A的真子集; (3)集合A是A∩B的子集或是A∪B的子集; (4)周长相等的两个三角形全等或面积相等的两个三角形全等.解略.6.巩固练习 :P20 练习第1 , 2题
板书设计 1.3.1且 1.3.2或掌握逻辑联结词“或、且”的含义 正确应用逻辑联结词“或、且”解决问题 掌握真值表并会应用真值表解决问题 pqP∧qP∨q 真真真真 真假假真 假真假真 假假假假
教学反思 引导学生从前面学习的“充分条件”和“必要条件”出发,对新知有所认识。结合学生熟知的原命题与逆命题真假的判断归纳出新知识的特点,同时在应用新知的过程中,将所学的知识条理化,体会数学的严谨性,提高思维的深刻性,培养良好的思维品质。






















1.3.3非
项目 内容
课题 1.3.3非(1课时) 修改与创新
教学 目标 1.知识与技能目标: (1)掌握逻辑联结词“非”的含义 (2)正确应用逻辑联结词“非”解决问题 (3)掌握真值表并会应用真值表解决问题2.过程与方法目标:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.3.情感态度价值目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神
教学重、难点 重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容. 难点: 1、正确理解命题 “¬P”真假的规定和判定.2、简洁、准确地表述命题 “¬P”.
教学 准备 多媒体课件
教学过程 生探究过程:1、思考、分析问题1:下列各组命题中的两个命题间有什么关系? (1)①35能被5整除; ②35不能被5整除; (2) ①方程x2+x+1=0有实数根。 ②方程x2+x+1=0无实数根。 学生很容易看到,在每组命题中,命题②是命题①的否定。2、归纳定义一般地,对一个命题p全盘否定,就得到一个新命题,记作 ¬p 读作“非p”或“p的否定”。 3、命题“¬p”与命题p的真假间的关系 命题“¬p”与命题p的真假之间有什么联系? 引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。 例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。 第(2)组命题中,命题①是假命题,而命题②是真命题。 由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;p¬P 真假 假真 4、命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。 例:如果命题p:5是15的约数,那么 命题¬p:5不是15的约数; p的否命题:若一个数不是5,则这个数不是15的约数。 显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。5.例题分析 例1? 写出下表中各给定语的否定语。 若给定语为等于大于是都是至多有一个至少有一个 其否定语分别为? ? ? ? ? ? 分析:“等于”的否定语是“不等于”;
    ??? “大于”的否定语是“小于或者等于”;
    ??? “是”的否定语是“不是”;
    ??? “都是”的否定语是“不都是”;
    ??? “至多有一个”的否定语是“至少有两个”;
    ??? “至少有一个”的否定语是“一个都没有”;
例2:写出下列命题的否定,判断下列命题的真假 (1)p:y = sinx 是周期函数; (2)p:3<2; (3)p:空集是集合A的子集。 解略. 6.巩固练习:P20 练习第3题
板书设计 1.3.2 非(1)正确理解命题 “¬P”真假的规定和判定. (2)简洁、准确地表述命题 “¬P”.
教学反思 本节以问题驱动为指导,通过不断地提出问题,研究问题,解决问题,使学生获得知识,完成教学。学生在初中学习了简单的问题,由此出发,本节给出还有“非”的复合命题的概念,然后借助真值表,判断真假。同时需强调命题的否定和否命题的区别。






















1.4.1全称量词1.4.2存在量词
项目 内容
课题 1.4.1全称量词1.4.2存在量词(1课时) 修改与创新
教学 目标 1.知识与技能目标(1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词. (2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及 判断其命题的真假性.2.过程与方法目标 使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力. 3.情感态度价值观通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、难点 重点:理解全称量词与存在量词的意义 难点: 全称命题和特称命题真假的判定.
教学 准备 多媒体课件
教学过程 学生探究过程:1.思考、分析下列语句是命题吗?假如是命题你能判断它的真假吗? (1)2x+1是整数; (2) x>3; (3) 如果两个三角形全等,那么它们的对应边相等; (4)平行于同一条直线的两条直线互相平行; (5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书; (6)所有有中国国籍的人都是黄种人; (7)对所有的x∈R, x>3; (8)对任意一个x∈Z,2x+1是整数。推理、判断(让学生自己表述) (1)、(2)不能判断真假,不是命题。 (3)、(4)是命题且是真命题。 (5)-(8)如果是假,我们只要举出一个反例就行。 注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。 (5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假; 命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人. 命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3. (至少有一个x∈R, x≤3) 命题(8)是真命题。事实上不存在某个x∈Z,使2x+1不是整数。也可以说命题:存在某个x∈Z使2x+1不是整数,是假命题. 3.发现、归纳命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“?”表示,含有全称量词的命题,叫做全称命题。命题(5)-(8)都是全称命题。 通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示。那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:?x?M, p(x),读做“对任意x属于M,有p(x)成立”。 刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题: (5),存在个别高一学生数学课本不是采用人民教育出版社A版的教科书; (6),存在一个(个别、部分)有中国国籍的人不是黄种人. (7), 存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3) (8),不存在某个x∈Z使2x+1不是整数. 这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“”表示。含有存在量词的命题叫做特称命题(或存在命题)命题(5),-(8),都是特称命题(存在命题). 特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:。读做“存在一个x属于M,使p(x)成立”. 全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等. 4.巩固练习 (1)下列全称命题中,真命题是: A. 所有的素数是奇数; B. ; C. D. (2)下列特称命题中,假命题是: A. B.至少有一个能被2和3整除 C. 存在两个相交平面垂直于同一直线 D.x2是有理数. (3)已知:对恒成立,则a的取值范围是 ; 变式:已知:对恒成立,则a的取值范围是 ; (4)求函数的值域; 变式:已知:对方程有解,求a的取值范围.
板书设计 1.4.1全称量词1.4.2存在量词1.全称量词与全称命题的含义 例: 2.存在量词和特称命题的含义 例:
教学反思 全称量词和存在量词这节内容旨在使学生认识这两类在现实生活中广泛使用的量词,会判断含有量词的全称命题或特称命题的真假,从而为我们从量的形式和范围上认识和解决问题提供新的思路与方法。






















1.4.3含有一个量词的命题的否定
项目 内容
课题 1.4.3含有一个量词的命题的否定(1课时) 修改与创新
教学 目标 1.知识与技能目标(1)通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律. (2)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.2.过程与方法目标 :使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力. 3.情感态度价值观通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、难点 教学重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定. 教学难点:正确地对含有一个量词的命题进行否定.
教学 准备 多媒体课件
教学过程 学生探究过程:1.回顾我们在上一节中学习过逻辑联结词“非”.对给定的命题p ,如何得到命题p 的否定(或非p ),它们的真假性之间有何联系?2.思考、分析判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗? (1)所有的矩形都是平行四边形; (2)每一个素数都是奇数; (3)?x∈R, x2-2x+1≥0。 (4)有些实数的绝对值是正数; (5)某些平行四边形是菱形; (6)? x∈R, x2+1<0。3.推理、判断你能发现这些命题和它们的否定在形式上有什么变化?(让学生自己表述) 前三个命题都是全称命题,即具有形式“”。 其中命题(1)的否定是“并非所有的矩形都是平行四边形”,也就是说, 存在一个矩形不都是平行四边形; 命题(2)的否定是“并非每一个素数都是奇数;”,也就是说, 存在一个素数不是奇数; 命题(3)的否定是“并非?x∈R, x2-2x+1≥0”,也就是说,?x∈R, x2-2x+1<0; 后三个命题都是特称命题,即具有形式“”。其中命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说, 所有实数的绝对值都不是正数; 命题(5)的否定是“没有一个平行四边形是菱形”,也就是说, 每一个平行四边形都不是菱形; 命题(6)的否定是“不存在x∈R, x2+1<0”,也就是说,?x∈R, x2+1≥0; 4.发现、归纳从命题的形式上看,前三个全称命题的否定都变成了特称命题。后三个特称命题的否定都变成了全称命题。 一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题P: 它的否定¬P 特称命题P:它的否定¬P:?x∈M,¬P(x)全称命题和否定是特称命题。特称命题的否定是全称命题。5.巩固练习 判断下列命题是全称命题还是特称命题,并写出它们的否定: p:所有能被3整除的整数都是奇数; p:每一个四边形的四个顶点共圆; p:对?x∈Z,x2个位数字不等于3; p:? x∈R, x2+2x+2≤0; p:有的三角形是等边三角形; p:有一个素数含三个正因数。
板书设计 1.4.3含有一个量词的命题的否定全称命题P: 它的否定¬P 特称命题P:它的否定¬P:?x∈M,¬P(x)
教学反思 本节内容重在让学生通过数学中的一些实例,探索并归纳出含有一个量词的命题与他们的否定在形式上的变化规律,并在教师引导下,让学生根据全称量词和存在量词的含义,用简洁,自然地语言表达还有一个量词的命题的否定。