项目 内容
课题 导数的概念(共 1 课时) 修改与创新
教学 目标 1.了解瞬时速度、瞬时变化率的概念; 2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数
教学重、难点 教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念.
教学 准备 多媒体课件
教学过程 一、导入新课:(一)平均变化率 (二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,, 所以, 虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二、讲授新课:1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况: 思考:当趋近于0时,平均速度有什么样的变化趋势? 结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值. 从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是 为了表述方便,我们用 表示“当,趋近于0时,平均速度趋近于定值”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2 导数的概念从函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在出的导数,记作或,即 说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率 (2),当时,,所以三.典例分析 例1.(1)求函数y=3x2在x=1处的导数.分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2 再求再求解:法一 定义法(略) 法二:(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数. 解: 例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义. 解:在第时和第时,原油温度的瞬时变化率就是和 根据导数定义, 所以 同理可得:在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升. 注:一般地,反映了原油温度在时刻附近的变化情况.四.课堂练习1.质点运动规律为,求质点在的瞬时速度为. 2.求曲线y=f(x)=x3在时的导数.3.例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义. 课堂小结:1.瞬时速度、瞬时变化率的概念2.导数的概念 布置作业: P.80 A组,3,4
板书设计 §3.1.2导数的概念1.瞬时速度2 导数的概念例1.(1)求函数y=3x2在x=1处的导数.例2.(课本例1)练习1.质点运动规律为,求质点在的瞬时速度为. 2.求曲线y=f(x)=x3在时的导数.3.例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.
教学反思 用平均速度和瞬时速度、平均膨胀率和瞬时膨胀率的关系,说明瞬时变化率的概念,以帮助学生理解瞬时变化率的意义,并由此给出导数的概念。 练习让学生自己独立完成,教师必要时给与指导。