3.3.3函数的最大(小)值与导数

文档属性

名称 3.3.3函数的最大(小)值与导数
格式 zip
文件大小 117.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-11-23 12:15:39

图片预览

文档简介










项目 内容
课题 §3.3.3函数的最大(小)值与导数(共 2 课时) 修改与创新
教学 目标 ⒈使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;⒉使学生掌握用导数求函数的极值及最值的方法和步骤
教学重、难点 教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学 准备 多媒体课件
教学过程 一、导入新课:我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果是函数的极大(小)值点,那么在点附近找不到比更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值.二、讲授新课:观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值.说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续.(可以不给学生讲) ⑵给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值; ⑶在闭区间上的每一点必须连续,即函数图像没有间断, ⑷函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性. ⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3.利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值三.典例分析 例1.(课本例5)求在的最大值与最小值 解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于, 因此,函数在的最大值是4,最小值是. 上述结论可以从函数在上的图象得到直观验证.例2.求函数在区间上的最大值与最小值 解:先求导数,得 令=0即解得 导数的正负以及,如下表从上表知,当时,函数有最大值13,当时,函数有最小值4 例3.已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.解:设g(x)= ∵f(x)在(0,1)上是减函数,在[1,+∞)上是增函数 ∴g(x)在(0,1)上是减函数,在[1,+∞)上是增函数. ∴ ∴ 解得 经检验,a=1,b=1时,f(x)满足题设的两个条件.四.课堂练习1.下列说法正确的是 ( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 3.函数y=,在[-1,1]上的最小值为( ) A.0 B.-2 C.-1 D.4.求函数在区间上的最大值与最小值.5.课本 练习课堂小结:1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点; 2.函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件; 3.闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值 4.利用导数求函数的最值方法.布置作业: P99 A组6
板书设计 §3.3.3函数的最大(小)值与导数 1.一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值。2.利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值。
教学反思 这里求最值,仅仅只对在闭区间且图像是一条连续不断的函数,所以求解较为简单。鉴于课标的要求,教学时,对不满足条件的函数求最值,不做补充。但是,对在开区间,且函数只有一个极值点的,可举例分析其最值的情况,及求解。函数只有一个极(大)小值,则该极(大)小值也是最(大)小值。这一点,学生不难理解。