名称 | 【备考2020】中考数学一轮复习 第38节 频率与概率学案(原卷+解析卷) | | |
格式 | zip | ||
文件大小 | 1.4MB | ||
资源类型 | 试卷 | ||
版本资源 | 通用版 | ||
科目 | 数学 | ||
更新时间 | 2019-11-22 19:36:06 |
■考点2 .随机事件概率的计算
4.随机事件概率的计算方法
(1)一步完成:直接列举法,运用概率公式计算;
(2)两步完成:列表法、画树状图法;
(3)两步以上:画树状图法
■考点3.几何概率的计算
几何概率的计算方法 求出阴影区域面积与总面积之比即为该事件发生的概率.
考点4.利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
■考点1. 概率及公式
◇典例:
1.【2018福建】投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )
A.两枚骰子向上一面的点数之和大于1
B.两枚骰子向上一面的点数之和等于1
C.两枚骰子向上一面的点数之和大于12
D.两枚骰子向上一面的点数之和等于12
【考点】随机事件
【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.
解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;
B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;
C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;
D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;
故选:D.
2.【2018江苏】抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率( )
A.小于 B.等于 C.大于 D.无法确定
【考点】概率的意义
【分析】利用概率的意义直接得出答案.
解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,
他第4次抛掷这枚硬币,正面朝上的概率为:,
故选:B.
【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.
3.【2018新疆】一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是 .
【考点】概率公式
【分析】直接利用概率公式求解即可求得答案.
解:∵袋子中共有5+2+1=8个球,其中红球有5个,
∴摸到红球的概率是,
故答案为:.
【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
◆变式训练
1.【2018通辽】下列说法错误的是( )
A.通过平移或旋转得到的图形与原图形全等
B.“对顶角相等”的逆命题是真命题
C.圆内接正六边形的边长等于半径
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
2.【2018南通】下列说法中,正确的是( )
A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖
B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式
C.一组数据8,8,7,10,6,8,9的众数是8
D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小
3.【2018新疆】一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .
■考点2 .随机事件概率的计算
◇典例
1.【2018河南】现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )
A. B. C. D.
【考点】列表法和树状图法求概率
【分析】直接利用树状图法列举出所有可能进而求出概率.
解:令3张用A1,A2,A3,表示,用B表示,
可得:
,
一共有12种可能,两张卡片正面图案相同的有6种,
故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.
故选:D.
【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.
2.【2017?青岛】小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.21教育名师原创作品
【考点】游戏公平性;列表法与树状图法.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字的差为偶数的情况,再利用概率公式求解即可求得答案.
解:不公平,
画树状图得:
∵共有9种等可能的结果,数字的差为偶数的有4种情况,
∴P(小华胜)=,P(小军胜)=,
∵≠,
∴这个游戏对双方不公平.
◆变式训练
1.【2018重庆】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
2.【2017?毕节】由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量
采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.
如果小王和小张按上述规则各转动转盘一次,则
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
■考点3.几何概率的计算
◇典例:
1.【2017?东营】如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形
是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )21*cnjy*com
A. B. C. D.
【考点】几何概率;几何体的展开图.
【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.
解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,
从其余的小正方形中任取一个涂上阴影共有7种情况,
而能够构成正方体的表面展开图的有以下情况,D、E、F、G,
∴能构成这个正方体的表面展开图的概率是,
故选(A)
2.【2018义乌】如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )
A. B. C. D.
【考点】几何概率
【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.
解:∵黄扇形区域的圆心角为90°,
所以黄区域所占的面积比例为=,
即转动圆盘一次,指针停在黄区域的概率是,
故选:B.
【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
◆变式训练
1.【2017?辽阳】如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每
块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是( )
A. B. C. D.
2.【2017?宁夏】如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞
镖均落在纸板上),则飞镖落在阴影区域的概率是 .
考点4.利用频率估计概率
◇典例:
【2017兰州】一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
【考点】利用频率估计概率.
【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.
解:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
变式训练
1.【2018齐齐哈尔】下列成语中,表示不可能事件的是( )
A.缘木求鱼 B.杀鸡取卵C.探囊取物 D.日月经天,江河行地
2.【2018镇江】小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )
A.36 B.30 C.24 D.18
3.【2018梧州】小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )
A. B. C. D.
4.【2018呼和浩特】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
5.【2018贵港】笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )
A. B. C. D.
6.【2018黑龙江】掷一枚质地均匀的骰子,向上一面的点数为5的概率是 .
7.【2017宁夏】如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .
8.【2018牡丹江】同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 .
9.【2018昆明】为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.
(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;
(2)求出抽到B队和C队参加交流活动的概率.
10.【2018玉林】今年5月13日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:
做家务时间(小时)
人数
所占百分比
A组:0.5
15
30%
B组:1
30
60%
C组:1.5
x
4%
D组:2
3
6%
合计
y
100
(1)统计表中的x= ,y= ;
(2)小君计算被抽查同学做家务时间的平均数是这样的:
第一步:计算平均数的公式是=,
第二步:该问题中n=4,x1=0.5,x2=1,x3=1.5,x4=2,
第三步:==1.25(小时)
小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;
(3)现从C,D两组中任选2人,求这2人都在D组中的概率(用树形图法或列表法).
一.选择题
1.【2018沈阳】
下列事件中,是必然事件的是( )
A.任意买一张电影票,座位号是2的倍数
B.13个人中至少有两个人生肖相同
C.车辆随机到达一个路口,遇到红灯
D.明天一定会下雨
2.【2018南充】下列说法正确的是( )
A.调查某班学生的身高情况,适宜采用全面调查
B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C.天气预报说明天的降水概率为95%,意味着明天一定下雨
D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
3.【2018绍兴】抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )
A. B. C. D.
4.【2018随州】正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
5.【2018玉林】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
6.【2018无锡】如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有( )
A.4条 B.5条 C.6条 D.7条
二.填空题
7.【2018宿迁】小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,,则小明第一次取走火柴棒的根数是________.
8.【2018呼和浩特】已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为 .
9.【2018绥化】如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是 .
10.【2018黄冈】在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .
三.解答题
11.【2018福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过
40,超过部分每件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:
(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
揽件数,解决以下问题:
①估计甲公司各揽件员的日平均件数;
②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.
12.【2018郴州】6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型
A
B
AB
O
人数
10
5
(1)这次随机抽取的献血者人数为 人,m= ;
(2)补全上表中的数据;
(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
13.【2018兰州】在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)
(1)画树状图或列表,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=x+1的图象上的概率.
14.【2018自贡】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
15.【2018天门】在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.
组别
发言次数n
百分比
A
0≤n<3
10%
B
3≤n<6
20%
C
6≤n<9
25%
D
9≤n<12
30%
E
12≤n<15
10%
F
15≤n<18
m%
请你根据所给的相关信息,解答下列问题:
(1)本次共随机采访了 名教师,m= ;
(2)补全条形统计图;
(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.
第六章
概率与统计第37节频率与概率
■考点1. 概率及公式
定义 表示一个事件发生的可能性大小的数.
概率公式P(A)= (m表示试验中事件A出现的次数,n表示所有等可能出现的结果的次数).
用频率可以估计概率
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么事件A发生的概率P(A)=p=.21*cnjy*com
3. 事件的类型及其概率
事件类型
概率
确定性事件
1或0
必然事件
1
不可能事件
0
不确定性事件(随机事件)
0
■考点2 .随机事件概率的计算
4.随机事件概率的计算方法
(1)一步完成:直接列举法,运用概率公式计算;
(2)两步完成:列表法、画树状图法;
(3)两步以上:画树状图法
■考点3.几何概率的计算
几何概率的计算方法 求出阴影区域面积与总面积之比即为该事件发生的概率.
考点4.利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
■考点1. 概率及公式
◇典例:
1.【2018福建】投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )
A.两枚骰子向上一面的点数之和大于1
B.两枚骰子向上一面的点数之和等于1
C.两枚骰子向上一面的点数之和大于12
D.两枚骰子向上一面的点数之和等于12
【考点】随机事件
【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.
解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;
B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;
C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;
D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;
故选:D.
2.【2018江苏】抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率( )
A.小于 B.等于 C.大于 D.无法确定
【考点】概率的意义
【分析】利用概率的意义直接得出答案.
解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,
他第4次抛掷这枚硬币,正面朝上的概率为:,
故选:B.
【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.
3.【2018新疆】一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是 .
【考点】概率公式
【分析】直接利用概率公式求解即可求得答案.
解:∵袋子中共有5+2+1=8个球,其中红球有5个,
∴摸到红球的概率是,
故答案为:.
【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
◆变式训练
1.【2018通辽】下列说法错误的是( )
A.通过平移或旋转得到的图形与原图形全等
B.“对顶角相等”的逆命题是真命题
C.圆内接正六边形的边长等于半径
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
【考点】平移、旋转的性质、对顶角的性质,圆内接多边形的性质,随机事件
【分析】根据平移、旋转的性质、对顶角的性质、圆内接多边形的性质、随机事件的概念判断即可.
解:通过平移或旋转得到的图形与原图形全等,A正确,不符合题意;
“对顶角相等”的逆命题是相等的角是对顶角,是假命题,B错误,符合题意;
圆内接正六边形的边长等于半径,C正确,不符合题意;
“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,不符合题意;
故选:B.
2.【2018南通】下列说法中,正确的是( )
A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖
B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式
C.一组数据8,8,7,10,6,8,9的众数是8
D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小
【考点】概率,抽样调查与全面调查,众数,中位数,方差
【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.
解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;
B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;
C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;
D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;
故选:C.
【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.
3.【2018新疆】一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .
【考点】概率公式
【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是.
故答案为:.
【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
■考点2 .随机事件概率的计算
◇典例
1.【2018河南】现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )
A. B. C. D.
【考点】列表法和树状图法求概率
【分析】直接利用树状图法列举出所有可能进而求出概率.
解:令3张用A1,A2,A3,表示,用B表示,
可得:
,
一共有12种可能,两张卡片正面图案相同的有6种,
故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.
故选:D.
【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.
2.【2017?青岛】小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.21教育名师原创作品
【考点】游戏公平性;列表法与树状图法.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字的差为偶数的情况,再利用概率公式求解即可求得答案.
解:不公平,
画树状图得:
∵共有9种等可能的结果,数字的差为偶数的有4种情况,
∴P(小华胜)=,P(小军胜)=,
∵≠,
∴这个游戏对双方不公平.
◆变式训练
1.【2018重庆】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
【考点】列表法与树状图法
【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;
(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.
解:(1)调查的总人数为12÷30%=40(人),
所以C项目的人数为40﹣12﹣14﹣4=10(人)
条形统计图补充为:
故答案为40人;
(2)画树状图为:
共有12种等可能的结果数,其中恰好选中1名男生和1名女生担任活动记录员的结果数为8,
所以恰好选中1名男生和1名女生担任活动记录员的概率==.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
2.【2017?毕节】由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量
采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.
如果小王和小张按上述规则各转动转盘一次,则
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
【考点】游戏公平性;概率公式;列表法与树状图法.
【分析】(1)根据概率公式直接计算即可;
(2)列表得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.
解:
(1)∵转盘的4个等分区域内只有1,3两个奇数,
∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==;
(2)列表如下:
1
2
3
4
1
(1,1)
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,2)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
(3,4)
4
(4,1)
(4,2)
(4,3)
(4,4)
所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,
∴P(小王胜)==,P(小张胜)==,
∴游戏公平.
■考点3.几何概率的计算
◇典例:
1.【2017?东营】如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形
是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )21*cnjy*com
A. B. C. D.
【考点】几何概率;几何体的展开图.
【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.
解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,
从其余的小正方形中任取一个涂上阴影共有7种情况,
而能够构成正方体的表面展开图的有以下情况,D、E、F、G,
∴能构成这个正方体的表面展开图的概率是,
故选(A)
2.【2018义乌】如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )
A. B. C. D.
【考点】几何概率
【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.
解:∵黄扇形区域的圆心角为90°,
所以黄区域所占的面积比例为=,
即转动圆盘一次,指针停在黄区域的概率是,
故选:B.
【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
◆变式训练
1.【2017?辽阳】如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每
块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是( )
A. B. C. D.
【考点】几何概率.
【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.
解:∵由图可知,黑色方砖4块,共有16块方砖,
∴黑色方砖在整个区域中所占的比值==,
∴它停在黑色区域的概率是;
故选B.
2.【2017?宁夏】如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞
镖均落在纸板上),则飞镖落在阴影区域的概率是 .
【考点】几何概率.
【分析】直接利用阴影部分÷总面积=飞镖落在阴影区域的概率,即可得出答案.
解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,
故飞镖落在阴影区域的概率是:=.
故答案为:.
考点4.利用频率估计概率
◇典例:
【2017兰州】一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
【考点】利用频率估计概率.
【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.
解:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
变式训练
【2017锦州】在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是 个.
【考点】利用频率估计概率.
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.
解:白色球的个数是:20×(1﹣10%﹣30%)=20×60%=12(个);
故答案为:12.
1.【2018齐齐哈尔】下列成语中,表示不可能事件的是( )
A.缘木求鱼 B.杀鸡取卵C.探囊取物 D.日月经天,江河行地
【考点】随机事件
【分析】直接利用不可能事件以及必然事件的定义分析得出答案.
解:A、缘木求鱼,是不可能事件,符合题意;
B、杀鸡取卵,是必然事件,不合题意;
C、探囊取物,是必然事件,不合题意;
D、日月经天,江河行地,是必然事件,不合题意;
故选:A.
【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.
2.【2018镇江】小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )
A.36 B.30 C.24 D.18
【考点】几何概率
【分析】用大于8的数字的个数n﹣4除以总个数=对应概率列出关于n的方程,解之可得.
解:∵“指针所落区域标注的数字大于8”的概率是,
∴=,
解得:n=24,
故选:C.
【点评】本题主要考查几何概率,解题的关键是根据题意得出大于8的数字的个数及概率公式.
3.【2018梧州】小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )
A. B. C. D.
【考点】列表法与树状图
【分析】画出树状图,利用概率公式计算即可.
解:如图,一共有27种可能,三人摸到球的颜色都不相同有6种可能,
∴P(三人摸到球的颜色都不相同)==.
故选:D.
【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.
4.【2018呼和浩特】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
【考点】利用频率估计概率
【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;
故选:D.
【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
5.【2018贵港】笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )
A. B. C. D.
【考点】概率公式
【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.
解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,
∴抽到编号是3的倍数的概率是,
故选:C.
6.【2018黑龙江】掷一枚质地均匀的骰子,向上一面的点数为5的概率是 .
【考点】概率公式
【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.
解:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:,
故答案为:.
【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.
7.【2017宁夏】如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .
【考点】几何概率.
【分析】直接利用阴影部分÷总面积=飞镖落在阴影区域的概率,即可得出答案.
解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,
故飞镖落在阴影区域的概率是:=.
故答案为:.
8.【2018牡丹江】同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 .
【考点】列表法与树状图法
【分析】列举出所有情况,看一枚硬币正面向上,一枚硬币反面向上的情况数占总情况数的多少即可.
解:画树形图得:
由树形图可知共4种情况,一枚硬币正面向上,一枚硬币反面向上的情况数有2种,所以概率是=.
故答案是.
【点评】本题考查了求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
9.【2018昆明】为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.
(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;
(2)求出抽到B队和C队参加交流活动的概率.
【考点】列表法与树状图法
【分析】(1)列表得出所有等可能结果;
(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.
解:(1)列表如下:
A
B
C
A
(B,A)
(C,A)
B
(A,B)
(C,B)
C
(A,C)
(B,C)
由表可知共有6种等可能的结果;
(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,
所以抽到B队和C队参加交流活动的概率为=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
10.【2018玉林】今年5月13日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:
做家务时间(小时)
人数
所占百分比
A组:0.5
15
30%
B组:1
30
60%
C组:1.5
x
4%
D组:2
3
6%
合计
y
100
(1)统计表中的x= ,y= ;
(2)小君计算被抽查同学做家务时间的平均数是这样的:
第一步:计算平均数的公式是=,
第二步:该问题中n=4,x1=0.5,x2=1,x3=1.5,x4=2,
第三步:==1.25(小时)
小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;
(3)现从C,D两组中任选2人,求这2人都在D组中的概率(用树形图法或列表法).
【考点】加权平均数,列表法与树形图法求概率
【分析】(1)利用:某组的百分比=,先计算出总人数,再求x、y;
(2)利用加权平均数公式计算做家务时间的平均数;
(3)列出表格或树形图,把所有情况和在D组的情况都写出来,利用求概率的公式计算出概率.
解:(1)抽查的总人数为:15÷30%=50(人),
x=50×4%=2(人)
y=50×100%=50(人)
故答案为:2,50;
(2)小君的计算过程不正确.
被抽查同学做家务时间的平均数为:
=0.93(小时)
被抽查同学做家务时间的平均数为0.93小时.
(3)C组有两人,不妨设为甲、乙,D组有三人,不妨设为:A、B、C,
列出树形图如下:
共有20种情况,其中2人都在D组的按情况有:AB,AC.BA,BC,CA,CB共6种,
∴2人都在D组中的概率为:P==.
一.选择题
1.【2018沈阳】
下列事件中,是必然事件的是( )
A.任意买一张电影票,座位号是2的倍数
B.13个人中至少有两个人生肖相同
C.车辆随机到达一个路口,遇到红灯
D.明天一定会下雨
【考点】必然事件,不可能事件,随机事件
【分析】必然事件就是一定发生的事件,依据定义即可判断.
解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;
B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;
C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;
D、“明天一定会下雨”是随机事件,故此选项错误;
故选:B.
【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2.【2018南充】下列说法正确的是( )
A.调查某班学生的身高情况,适宜采用全面调查
B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C.天气预报说明天的降水概率为95%,意味着明天一定下雨
D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
【考点】全面调查与抽样调查;随机事件;概率的意义
【分析】利用概率的意义以及实际生活常识分析得出即可.
解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;
B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;
C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;
D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;
故选:A.
【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.
3.【2018绍兴】抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )
A. B. C. D.
【考点】概率公式
【分析】让向上一面的数字是2的情况数除以总情况数6即为所求的概率.
解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,
∴朝上一面的数字为2的概率为,
故选:A.
【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.
4.【2018随州】正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
【考点】几何概率
【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.
解:如图,连接PA、PB、OP;
则S半圆O==,S△ABP=×2×1=1,
由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)
=4(﹣1)=2π﹣4,
∴米粒落在阴影部分的概率为=,
故选:A.
【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.
5.【2018玉林】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
【考点】利用频率估计概率
【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.
解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;
B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;
C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;
D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.
故选:D.
6.【2018无锡】如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有( )
A.4条 B.5条 C.6条 D.7条
【考点】列表法与树状图法
【分析】将各格点分别记为1、2、3、4、5、6、7,利用树状图可得所有路径.
解:如图,将各格点分别记为1、2、3、4、5、6、7,
画树状图如下:
由树状图可知点P由A点运动到B点的不同路径共有5种,
故选:B.
【点评】本题主要考查列表法与树状图,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
二.填空题
7.【2018宿迁】小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,,则小明第一次取走火柴棒的根数是________.
【考点】随机事件
【分析】要保证小明获胜是必然事件,则小明必然要取到第7根火柴,进行倒推,就能找到保证小明获胜的方法.
解:如果小明第一次取走1根,剩下了6根,6既是1的倍数又是2的倍数,不管后面怎么取,小明都将取走最后一根火柴.故答案为:1.
8.【2018呼和浩特】已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为 .
【考点】概率公式,一次函数的性质
【分析】直接利用一次函数增减性结合k的取值范围进而得出答案.
解:当2k﹣1>0时,
解得:k>,则<k≤3时,y随x增加而增加,
故﹣3≤k<时,y随x增加而减小,
则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.
故答案为:.
【点评】此题主要考查了概率公式以及一次函数的性质,关键是掌握概率的计算方法.
9.【2018绥化】如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是 .
【考点】几何概率
【分析】击中黑色区域的概率等于黑色区域面积与正方形总面积之比.
解:随意投掷一个飞镖,击中黑色区域的概率是==.
故答案为:.
【点评】此题考查了几何概率计算公式以及其简单应用.注意面积之比=几何概率.
10.【2018黄冈】在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .
【考点】二次函数的性质;列表法与树状图法
【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a>0,b<0的结果数,然后根据概率公式求解.
解:画树状图为:
共有12种等可能的结果数,满足a>0,b<0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,
所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,
所以该二次函数图象恰好经过第一、二、四象限的概率==.
故答案为.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了二次函数的性质.
三.解答题
11.【2018福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过
40,超过部分每件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:
(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
揽件数,解决以下问题:
①估计甲公司各揽件员的日平均件数;
②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.
【考点】条形统计图,概率公式,平均数
【分析】(1)根据概率公式计算可得;
(2)分别根据平均数的定义及其意义解答可得.
解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,
所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;
(2)①甲公司各揽件员的日平均件数为=39件;
②甲公司揽件员的日平均工资为70+39×2=148元,
乙公司揽件员的日平均工资为
=[40+]×4+×6
=159.4元,
因为159.4>148,
所以仅从工资收入的角度考虑,小明应到乙公司应聘.
12.【2018郴州】6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型
A
B
AB
O
人数
10
5
(1)这次随机抽取的献血者人数为 人,m= ;
(2)补全上表中的数据;
(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
【考点】用样本估计总体;统计表;扇形统计图;概率公式
【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;
(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.
解:(1)这次随机抽取的献血者人数为5÷10%=50(人),
所以m=×100=20;
故答案为50,20;
(2)O型献血的人数为46%×50=23(人),
A型献血的人数为50﹣10﹣5﹣23=12(人),
如图,
故答案为12,23;
(3)从献血者人群中任抽取一人,其血型是A型的概率==,
3000×=720,
估计这3000人中大约有720人是A型血.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.
13.【2018兰州】在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)
(1)画树状图或列表,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=x+1的图象上的概率.
【考点】一次函数图象上点的坐标特征;列表法与树状图法
【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)找到点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.
解:(1)画树状图得:
共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、
(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);
(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,
∴点M(x,y)在函数y=x+1的图象上的概率为=.
【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
14.【2018自贡】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
【考点】全面调查与抽样调查;扇形统计图;条形统计图;利用频率估计概率
【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;
(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.
(3)利用样本估计总体即可估计爱好运动的学生人数.
(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.
解:(1)爱好运动的人数为40,所占百分比为40%
∴共调查人数为:40÷40%=100
(2)爱好上网的人数所占百分比为10%
∴爱好上网人数为:100×10%=10,
∴爱好阅读人数为:100﹣40﹣20﹣10=30,
补全条形统计图,如图所示,
(3)爱好运动的学生人数所占的百分比为40%,
∴估计爱好运用的学生人数为:1500×40%=600
(4)爱好阅读的学生人数所占的百分比30%,
∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为
故答案为:(1)100;(3)600;(4)
【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.
15.【2018天门】在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.
组别
发言次数n
百分比
A
0≤n<3
10%
B
3≤n<6
20%
C
6≤n<9
25%
D
9≤n<12
30%
E
12≤n<15
10%
F
15≤n<18
m%
请你根据所给的相关信息,解答下列问题:
(1)本次共随机采访了 名教师,m= ;
(2)补全条形统计图;
(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.
【考点】频数(率)分布表;条形统计图;列表法与树状图法
【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;
(2)先计算出D、F组的人数,再补全条形统计图;
(3)列出树形图,根据总的情况和一男一女的情况计算概率.
解:(1)由条形图知,C组共有15名,占25%
所以本次共随机采访了15÷25%=60(名)
m=100﹣10﹣20﹣25﹣30﹣10=5
故答案为:60,5
(2)D组教师有:60×30%=18(名)
F组教师有:60×5%=3(名)
(3)E组共有6名教师,4男2女,
F组有三名教师,1男2女
共有18种可能,
∴P一男一女==
答:所选派的两名教师恰好是1男1女的概率为
【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比