中小学教育资源及组卷应用平台
《25.2用列举法求概率(2)》导学案
课题 用列举法求概率(2) 学科 数学 年级 九年级上册
教学目标 1.理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.2.经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.3.通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.
重点难点 重点:会用树状图法求随机事件的概率. 难点:区分什么时候用列表法,什么时候用树状图法求概率以及树状图的画法.
教学过程
情景导入 齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛. (1)你知道孙膑给的是怎样的建议吗? (2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?
合作探究 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法. 当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图.什么是树状图呢?怎么画呢?下面我们用一件事情来举例:如一个试验中涉及3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,则其树形图如图:下面我们在具体的实例中感知树状图的具体作法:例1:甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰有1个,2个,3个写有元音字母的概率各是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 想一想:我们按甲、乙、丙的顺序画出树状图,如果改为其它的顺序,求出的概率还是一样的吗?想一想:什么时候用”列表法”方便什么时候用”树形图”方便?
当堂检测 1.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A. B. C. D. 2.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A. B. C. D.3.在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是______ 4. 同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上; (2) 两枚硬币正面朝上而一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上. 5.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用 “石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头” “剪刀”“布”三种手势中的一种,规定“石头” 胜“剪刀”, “剪刀”胜“布”,“布”胜“石头”. 问一次比赛能淘汰一人的概率是多少? 6.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌. (1)计算两次摸取纸牌上数字之和为5的概率; (2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这 是个公平的游戏吗?请说明理由.
小结反思 1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果? 2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)
中小学教育资源及组卷应用平台
《25.2用列举法求概率(2)》导学案
课题 用列举法求概率(2) 学科 数学 年级 九年级上册
教学目标 1.理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.2.经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.3.通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.
重点难点 重点:会用树状图法求随机事件的概率. 难点:区分什么时候用列表法,什么时候用树状图法求概率以及树状图的画法.
教学过程
情景导入 阅读故事《田忌赛马》,提出问题,引入新课. 齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛. (1)你知道孙膑给的是怎样的建议吗? (2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?怎么用数学知识解答,学完本节课你就知道了!
合作探究 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法. 当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图.什么是树状图呢?怎么画呢?下面我们用一件事情来举例:如一个试验中涉及3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,则其树形图如图:下面我们在具体的实例中感知树状图的具体作法:例1:甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰有1个,2个,3个写有元音字母的概率各是多少? (2)取出的3个小球上全是辅音字母的概率是多少?介绍树状图的方法: 第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行. 第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E. 第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I. (如果有更多的步骤可依上继续.) 第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了. “树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等. P(一个元音)=;P(两个元音)==, P(三个元音)=;P(三个辅音)==. 教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.想一想:我们按甲、乙、丙的顺序画出树状图,如果改为其它的顺序,求出的概率还是一样的吗?(答案:一样 )现在你明白怎么画树状图了吗?●总结:画树状图求概率的基本步骤: (1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出随机事件A包含的结果数m,试验的所有可能结果数n; (4)用概率公式进行计算.想一想:什么时候用”列表法”方便什么时候用”树形图”方便? 用树状图和列表的方法求概率的前提:各种结果出现的可能性务必相同. 当一次试验涉及两个因素时,且可能出现的结果较多时,为了不重复不遗漏地列出所有可能的结果,通常用列表法。 当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为了不重复不遗漏地列出所有可能的结果,通常用树形图。
当堂检测 1.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )BA. B. C. D. 2.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )DA. B. C. D.3.在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是______画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD是平行四边形的概率是=.4. 同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上; (2) 两枚硬币正面朝上而一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上.答案:(1)p= (2)p= (3)p=5.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用 “石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头” “剪刀”“布”三种手势中的一种,规定“石头” 胜“剪刀”, “剪刀”胜“布”,“布”胜“石头”. 问一次比赛能淘汰一人的概率是多少?答案:p=6.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌. (1)计算两次摸取纸牌上数字之和为5的概率; (2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这 是个公平的游戏吗?请说明理由.(1)p= (2)p奇数= p偶数=
小结反思 1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果? 2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)