名称 | (新教材)人教B版数学必修第二册 5.3.4 频率与概率(32张PPT课件+学案) | | |
格式 | zip | ||
文件大小 | 3.1MB | ||
资源类型 | 教案 | ||
版本资源 | 人教B版(2019) | ||
科目 | 数学 | ||
更新时间 | 2019-11-25 17:13:47 |
(3)若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件.( )
答案:(1)√ (2)× (3)×
某人将一枚硬币连抛20次,正面朝上的情况出现了12次,若用A表示事件“正面向上”,则A的( )
A.频率为 B.概率为
C.频率为12 D.概率接近
答案:A
某医院治疗一种疾病的治愈率为,若前4个病人都没有治好,则第5个病人的治愈率为( )
A.1 B.
C. D.0
答案:B
某商品的合格率为99%,某人购买这种商品100件,他认为这100件商品中一定有1件是不合格的,这种认识是________的(填“合理”或“不合理”).
答案:不合理
概率概念的理解
下列说法正确的是( )
A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩, 则一定为一男一女
B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖
C.10张票中有1 张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大
D.10张票中有1 张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1
【解析】 一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确.
【答案】 D
(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.
(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.
(3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.
1.我们知道,每次抛掷硬币的结果出现正、反的概率都为0.5,则连续抛掷质地均匀的硬币两次,是否一定出现“一次正面向上,一次反面向上”呢?
解:不一定.这是因为统计规律不同于确定的数学规律,对于具体的一次试验而言,它带有很大的随机性(即偶然性),通过具体试验可以知道除上述结果外,也可能出现“两次都是正面向上”“两次都是反面向上”.
尽管随机事件的概率不像函数关系那样具有确定性,但是如果我们知道某事件发生的概率的大小,也能作出科学的决策.例如:做连续抛掷两枚质地均匀的硬币的试验1 000次,可以预见:“两个都是正面向上”大约出现250次,“两个都是反面向上”大约出现250次,而“一个正面向上、一个反面向上”大约出现500次.
2.若某种彩票准备发行1 000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1 000张的话是否一定会中奖?
解:中奖的概率为;买1 000张也不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖.买彩票中奖的概率为,是指试验次数相当大,即随着购买彩票的张数的增加,大约有的彩票中奖.
概率与频率的关系及求法
某射手在同一条件下进行射击,结果如下表所示:
射击次数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
92
178
455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
【解】 (1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.
(2)由于频率稳定在常数0.9附近,所以这个射手射击一次,击中靶心的概率约是0.9.
(1)频率是事件A发生的次数m与试验总次数n的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.
(2)解此类题目的步骤是:先利用频率的计算公式依次计算出频率,然后用频率估计概率.
下面是某批乒乓球质量检查结果表:
抽取球数
50
100
200
500
1 000
2 000
优等品数
45
92
194
470
954
1 900
优等品出现的频率
(1)在上表中填上优等品出现的频率;
(2)估计该批乒乓球优等品的概率是多少?
(3)若抽取乒乓球的数量为1 700只,则优等品的数量大约为多少?
解:(1)如下表所示:
抽取球数
50
100
200
500
1 000
2 000
优等品数
45
92
194
470
954
1 900
优等品出现的频率
0.9
0.92
0.97
0.94
0.954
0.95
(2)从表中数据可以看出,这批乒乓球优等品的概率是0.95.
(3)由优等品的概率为0.95,则抽取1 700只乒乓球时,优等品的数量大约为1 700×0.95=1 615.
概率的应用
为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库中鱼的尾数.
【解】 设水库中鱼的尾数是n,现在要估计n的值,假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾鱼,设事件A={带记号的鱼},则P(A)=.
第二次从水库中捕出500尾鱼,其中带记号的有40尾,即事件A发生的频数为40,由概率的统计定义知P(A)≈,即≈,解得n≈25 000.
所以估计水库中的鱼有25 000尾.
(1)由于概率反映了随机事件发生的可能性的大小,概率是频率的近似值与稳定值,所以可以用样本出现的频率近似地估计总体中该结果出现的概率.
(2)实际生活与生产中常常用随机事件发生的概率来估计某个生物种群中个别生物种类的数量、某批次的产品中不合格产品的数量等.
某中学为了了解初中部学生的某项行为规范的养成情况,在学校随机抽取初中部的150名学生登记佩带胸卡的学生名字.结果,150名学生中有60名佩带胸卡.第二次检查,调查了初中部的所有学生,有500名学生佩带胸卡.据此估计该中学初中部一共有多少名学生.
解:设初中部有n名学生,
依题意得=,
解得n=1 250.
所以该中学初中部共有学生大约1 250名.
1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是( )
A.100个手术有99个手术成功,有1个手术失败
B.这个手术一定成功
C.99%的医生能做这个手术,另外1%的医生不能做这个手术
D.这个手术成功的可能性大小是99%
解析:选D.成功率大约是99%,说明手术成功的可能性大小是99%,故选D.
2.下列叙述中的事件最能体现概率是0.5的是( )
A.抛掷一枚骰子10次,其中数字6朝上出现了5次,抛掷一枚骰子数字6向上的概率
B.某地在8天内下雨4天,该地每天下雨的概率
C.进行10 000次抛掷硬币试验,出现5 001次正面向上,那么抛掷一枚硬币正面向上的概率
D.某人买了2张体育彩票,其中一张中500万大奖,那么购买一张体育彩票中500万大奖的概率
解析:选C.A,B,D中试验次数较少,只能说明相应事件发生的频率是0.5.
3.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是________.
解析:这一年内汽车挡风玻璃破碎的频率为=0.03,此频率值为概率的近似值.
答案:0.03
4.给出下列四个命题:
①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;
②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是;
③随机事件发生的频率就是这个随机事件发生的概率;
④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是.
其中正确命题的序号为________.
解析:①错,次品率是大量产品的估计值,并不是针对200件产品来说的.②③混淆了频率与概率的区别.④正确.
答案:④
5.如果掷一枚质地均匀的硬币,连续5次正面向上,有人认为下次出现反面向上的概率大于,这种理解正确吗?
解:这种理解是不正确的.掷一枚质地均匀的硬币,作为一次试验,其结果是随机的,但通过大量的试验,其结果呈现出一定的规律,即“正面向上”“反面向上”的可能性都是,连续5次正面向上这种结果是可能的,但对下一次试验来说,仍然是随机的,其出现正面向上和反面向上的可能性还是,而不会大于.
[A 基础达标]
1.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C表示抽到次品这一事件,则对C的说法正确的是( )
A.概率为
B.频率为
C.概率接近
D.每抽10台电视机,必有1台次品
解析:选B.事件C发生的频率为,由于只做了一次试验,故不能得出概率接近的结论.
2.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话( )
A.正确 B.错误
C.不一定 D.无法解释
解析:选B.把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.
3.某篮球运动员投篮命中率为98%,估算该运动员投篮1 000次命中的次数为( )
A.98 B.980
C.20 D.998
解析:选B.1 000次命中的次数约为98%×1 000=980.
4.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是( )
A.抽出的6件产品必有5件正品,1件次品
B.抽出的6件产品中可能有5件正品,1件次品
C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品
D.抽取6件产品时,不可能抽得5件正品,1件次品
解析:选B.从12件产品中抽到正品的概率为=,抽到次品的概率为=,所以抽出的6件产品中可能有5件正品,1件次品.
5.一袋中有红球5个、黑球4个,现从中任取5个球,至少有1个红球的概率为( )
A. B.
C. D.1
解析:选D.因为这是一个必然事件,所以其概率为1.
6.在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝下”的次数为________.
解析:由100×0.49=49,知有49次“正面朝上”,
故有100-49=51(次)“正面朝下”.
答案:51
7.对某厂生产的某种产品进行抽样检查,数据如下表所示:
调查件数
50
100
200
300
500
合格件数
47
92
192
285
478
根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.
解析:由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查n件产品,则=0.95,所以n≈1 000.
答案:1 000
8.下列说法正确的有________.(填序号)
①频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能性的大小.
②做n次随机试验,事件A发生m次,则事件A发生的频率就是事件A的概率.
③频率是不能脱离具体的试验次数的试验值,而概率是确定性的不依赖于试验次数的理论值.
④在大量实验中频率是概率的近似值,概率是频率的稳定值.
解析:由频率、概率的意义及二者的关系可知①、③、④正确.
答案:①③④
9.在一次试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个有圆形细胞的豚鼠被感染,50个有椭圆形细胞的豚鼠被感染,有不规则形状细胞的豚鼠全部被感染.根据试验结果,分别估计(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠被这种血清感染的概率.
解:(1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,
所以P(A)=0.
(2)记“椭圆形细胞的豚鼠被感染”为事件B,
由题意知P(B)===0.2.
(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.
10.某射击运动员进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
129
121
击中飞碟的频率
(1)将各次记录击中飞碟的频率填入表中;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数100,击中飞碟数是81,故击中飞碟的频率是=0.81,同理可求得之后的频率依次是0.792,0.820,0.820,0.793,0.806,0.807.
(2)击中飞碟的频率稳定在0.81附近,故这个运动员击中飞碟的概率约为0.81.
[B 能力提升]
11.“某彩票的中奖概率为”意味着( )
A.买1 000张彩票就一定能中奖
B.买1 000张彩票中一次奖
C.买1 000张彩票一次奖也不中
D.购买彩票中奖的可能性是
解析:选D.概率只是度量事件发生的可能性的大小,不能确定是否发生.
12.将一枚质地均匀的硬币连掷两次,则至少出现一次正面与两次均出现反面的概率比为________.
解析:将一枚质地均匀的硬币连掷两次有以下情形:
(正,正),(正,反),(反,正),(反,反).
至少出现一次正面有3种情形,两次均出现反面有1种情形,故答案为3∶1.
答案:3∶1
13.鱼池中共有N条鱼,从中捕出n条并标上记号后放回池中,经过一段时间后,再从池中捕出M条,其中有记号的有m条,则估计鱼池中共有鱼N=________条.
解析:由题意得≈,所以N≈.
答案:
14.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8 513尾鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)
解:(1)这种鱼卵的孵化概率P≈=0.851 3.
(2)30 000个鱼卵大约能孵化
30 000×=25 539(尾)鱼苗.
(3)设大概需备x个鱼卵,由题意知=,
所以x=≈5 900(个),
所以大概需备5 900个鱼卵.
[C 拓展探究]
15.活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球接近15个.
课件32张PPT。第五章 统计与概率第五章 统计与概率√××本部分内容讲解结束按ESC键退出全屏播放