[A 基础达标]
1.下列抽取样本的方式属于简单随机抽样的个数为( )
①盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;
②从20件玩具中一次性抽取3件进行质量检验;
③某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.3 B.2
C.1 D.0
解析:选D.①②③中都不是简单随机抽样,这是因为:①是放回抽样,②中是“一次性”抽取,而不是“逐个”抽取,③中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样.
2.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )
A., B.,
C., D.,
解析:选A.根据简单随机抽样的定义知选A.
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是( )
A. B.
C. D.
解析:选C.简单随机抽样是等可能性抽样,每个个体被抽到的机率都是=.故选C.
4.从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则应编号为( )
A.1,2,3,4,5,6,7,8,9,10
B.-5,-4,-3,-2,-1,0,1,2,3,4
C.10,20,30,40,50,60,70,80,90,100
D.0,1,2,3,4,5,6,7,8,9
解析:选D.利用随机数表法抽样时,必须保证所编号码的位数一致.
5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )
A.8 B.11
C.162 D.10
解析:选A.若设高三学生数为x,则高一学生数为,高二学生数为+300,所以有x+++300=3 500,解得x=1 600.故高一学生数为800,因此应抽取高一学生数为 =8.
6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的是________.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数表法抽样;
⑥每个运动员被抽到的机会相等.
解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
答案:④⑤⑥
7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.
解析:=25%,因此N=120.
答案:120
8.(2019·湖南省张家界市期末联考)我国古代数学算经十书之一的《九章算术》中有一“衰分”问题“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣_____________________________人”.
解析:今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×=145(人).
答案:145
9.天津某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.
解:抽签法:
第一步:将60名大学生编号,编号为1,2,3,…,60;
第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将60个号签放入一个不透明的盒子中,充分搅匀;
第四步:从盒子中逐个抽取10个号签,并记录上面的编号;
第五步:所得号码对应的学生,就是志愿小组的成员.
随机数表法:
第一步:将60名学生编号,编号为01,02,03,…,60;
第二步:在随机数表中任选一数开始,按某一确定方向读数;
第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;
第四步:找出号码与记录的数相同的学生组成志愿小组.
10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校
相关人数
抽取人数
A
x
1
B
36
y
C
54
3
(1)求x,y;
(2)若从高校B相关人员中选2人作专题发言,应采用什么抽样方法,请写出合理的抽样过程.
解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有=?x=18,=?y=2.故x=18,y=2.
(2)总体容量和样本容量较小,所以应采用抽签法,过程如下:
第一步,将36人随机编号,号码为1,2,3,…,36;
第二步,将号码分别写在相同的纸片上,揉成团,制成号签;
第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;
第四步,把与号码相对应的人抽出,即可得到所要的样本.
[B 能力提升]
11.从某批零件中抽取50个,然后再从50个零件中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )
A.36% B.72%
C.90% D.25%
解析:选C.×100%=90%,故该产品的合格率为90%.
12.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
A.4 B.5
C.6 D.7
解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×=2,抽取的果蔬类的种数为20×=4,二者之和为6种,故选C.
13.某中学高一年级有400人,高二年级有320人,高三年级有280人,每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.
解析:因为=0.2,所以n=200.
答案:200
14.某企业共有3 200名职工,其中青、中、老年职工的比例为3∶5∶2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽取的可能性相同吗?
解:因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理.
由样本容量为400,总体容量为3 200可知,抽样比是=,所以每人被抽到的可能性相同,均为.
因为青、中、老年职工的比例是3∶5∶2,所以应分别抽取:
青年职工400×=120(人);
中年职工400×=200(人);
老年职工400×=80(人).
[C 拓展探究]
15.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有=47.5%,=10%,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.
(2)游泳组中,抽取的青年人数为200××40%=60(人),抽取的中年人数为200××50%=75(人);抽取的老年人数为200××10%=15(人).
5.1 统 计
5.1.1 数据的收集
考点
学习目标
核心素养
总体与样本的概念
结合具体的实际问题,理解从总体中抽取样本的必要性和重要性
数据分析
简单随机抽样
掌握简单随机抽样中的抽签法、随机数表法的一般步骤
数据分析
分层抽样
会用分层抽样从总体中抽取样本
数据分析、数学运算
问题导学
预习教材P55-P60的内容,思考以下问题:
1.什么是简单随机抽样?简单随机抽样有什么特点?
2.什么是抽签法?什么是随机数表法?有哪些优点和缺点?
3.分层抽样是如何定义的?其特点是什么?
4.数据的收集有几种常用方法?
1.总体与样本
(1)总体:统计中所考察问题涉及的对象全体是总体.
(2)个体:总体中的每个对象都是个体.
(3)样本:抽取的部分对象组成总体的一个样本.
(4)样本容量:一个样本中包含的个体数目是样本容量.
2.简单随机抽样
(1)定义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.当总体中的个体之间差异程度较小和总体中个体数目较少时,通常采用这种方法.
(2)常见的简单随机抽样方法:抽签法、随机数表法.
(3)抽签法的优缺点:
①优点:简单易行.
②缺点:当总体的容量非常大时,操作起来就比较麻烦,而且如果抽取之前搅拌不均匀,可能导致抽取的样本不具有代表性.
(4)用随机数表进行简单随机抽样的一般步骤:
①对总体进行编号;
②在随机数表中任意指定一个开始选取的位置;
③按照一定规则选取编号.
3.分层抽样的定义
一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称为分层抽样).
■名师点拨
分层抽样适用于总体由差异明显的几部分组成的情况.
判断正误(正确的打“√”,错误的打“×”)
(1)简单随机抽样就是随便抽取样本.( )
(2)抽签时,先抽的比较幸运.( )
(3)3个人抓阄,每个人抓到的可能性都一样.( )
(4)使用随机数表时,开始的位置和方向可以任意选择.( )
(5)分层抽样实际上是按比例抽样.( )
(6)分层抽样中每个个体被抽到的可能性不一样.( )
答案:(1)× (2)× (3)√ (4)√ (5)√ (6)×
下列抽样试验中,适合用抽签法的有( )
A.从某厂生产的3 000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3 000件产品中抽取10件进行质量检验
解析:选B.A、D中总体的个数较大,不适于用抽签法;C中甲,乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看作是搅拌均匀了,故选B.
某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有18名女排运动员,要从中选出4人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )
A.①用简单随机抽样法,②用分层抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用分层抽样法,②用分层抽样法
D.①用简单随机抽样法,②用简单随机抽样法
解析:选B.①因家庭收入不同其社会购买力也不同,宜用分层抽样的方法.②因总体个数较小,宜用简单随机抽样法.
某单位有职工160人,其中业务员104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员的人数为( )
A.3 B.4
C.7 D.12
解析:选B.由=,设抽取管理人员x人,则=,得x=4.
简单随机抽样的概念
(1)关于简单随机抽样,下列说法正确的是( )
①它要求被抽取样本的总体的个数有限;
②它是从总体中逐个地进行抽取;
③它是一种不放回抽样;
④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
A.①② B.③④
C.①②③ D.①②③④
(2)下面的抽样方法是简单随机抽样的是________.
①从无数张高考试卷中抽取50张试卷作为样本;
②从80台笔记本电脑中一次性抽取6台电脑进行质量检查;
③一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;
④用抽签法从10件产品中选取3件进行质量检验.
【解析】 (1)由随机抽样的特征可知①②③④均正确.
(2)①中样本总体数目不确定,不是简单随机抽样;②中样本不是从总体中逐个抽取,不是简单随机抽样;③④符合简单随机抽样的特点,是简单随机抽样.
【答案】 (1)D (2)③④
判断一个抽样是否是简单随机抽样,一定要看它是否满足简单随机抽样的特点,这是判断的唯一标准.
(1)简单随机抽样的总体个数有限.
(2)简单随机抽样的样本是从总体中逐个抽取.
(3)简单随机抽样是一种不放回抽样.
(4)简单随机抽样中每个个体入样机会均等.
下面的抽样方法是简单随机抽样吗?为什么?
(1)从无数个个体中抽取50个个体作为样本;
(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样操作过程中,从中任取一种玩具检验后再放回;
(3)国家跳水队挑出最优秀的10名跳水队员,备战2020年东京奥运会;
(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中逐个无放回地抽出6个号签.
解:(1)不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是有限的.
(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取样本.
(3)不是简单随机抽样,因为这10名跳水队员是挑选出来的最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.
(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.
分层抽样的概念
(1)下列问题中,最适合用分层抽样抽取样本的是( )
A.从10名同学中抽取3人参加座谈会
B.一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分,现从中抽取12人了解有关情况
C.从1 000名工人中,抽取100名调查上班途中所用时间
D.从生产流水线上,抽取样本检查产品质量
(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )
A.每层等可能抽样
B.每层可以不等可能抽样
C.所有层按同一抽样比等可能抽样
D.所有层抽取的个体数量相同
【解析】 (1)A中总体个体无明显差异且个数较少,适合用简单随机抽样;C和D中总体个体无明显差异且个数较多,不适于用分层抽样;B中总体个体差异明显,适合用分层抽样.
(2)保证每个个体等可能的被抽取是各种基本抽样方法的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.
【答案】 (1)B (2)C
(1)使用分层抽样的前提
分层抽样的适用前提条件是总体可以分层、层与层之间有明显区别,而层内个体间差异较小.
(2)使用分层抽样应遵循的原则
①将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;
②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.
某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.
解析:由于被抽取的个体属性有明显的差异,因此宜采用分层抽样.
答案:分层抽样
分层抽样的应用
某网站针对“2019年法定节假日调休安排”提出的A,B,C三种放假方案进行了问卷调查,调查结果如下:
支持A方案
支持B方案
支持C方案
35岁以下的人数
200
400
800
35岁以上(含35岁)的人数
100
100
400
(1)从所有参与调查的人中,用分层抽样的方法抽取n人,已知从支持A方案的人中抽取了6人,求n的值;
(2)从支持B方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以上(含35岁)的人数是多少?35岁以下的人数是多少?
【解】 (1)由题意得
=,
解得n=40.
(2)35岁以下的人数为×400=4,
35岁以上(含35岁)的人数为5-4=1.
分层抽样的步骤
(1)计算样本容量与总体的个体数之比.
(2)将总体分成互不交叉的层,按比例确定各层要抽取的个体数.
(3)用简单随机抽样在各层中抽取相应数量的个体.
(4)将各层抽取的个体合在一起,就得到所取样本.
一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.
具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层.
(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.
(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.
(4)将300人合到一起,即得到一个样本.
1.抽签法中确保样本代表性的关键是( )
A.制签 B.搅拌均匀
C.逐一抽取 D.抽取不放回
解析:选B.逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.
2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )
A.总体是240名学生 B.个体是每名学生
C.样本是40名学生 D.样本容量是40
解析:选D.在这个问题中,总体是240名学生的身高,个体是每名学生的身高,样本是40名学生的身高,样本容量是40,因此选D.
3.下列试验中最适合用分层抽样法抽样的是( )
A.从一箱3 000个零件中抽取5个入样
B.从一箱3 000个零件中抽取600个入样
C.从一箱30个零件中抽取5个入样
D.从甲厂生产的100个零件和乙厂生产的200个零件中抽取6个入样
解析:选D.D中总体有明显差异,故用分层抽样.
4.当前,国家正分批修建经济适用房以解决低收入家庭住房紧张的问题.已知甲、乙、丙三个社区现分别有低收入家庭360户,270户,180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )
A.40 B.30
C.20 D.36
解析:选A.抽样比为=,
则应从甲社区中抽取低收入家庭的户数为360×=40,故选A.
[A 基础达标]
1.下列抽取样本的方式属于简单随机抽样的个数为( )
①盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;
②从20件玩具中一次性抽取3件进行质量检验;
③某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.3 B.2
C.1 D.0
解析:选D.①②③中都不是简单随机抽样,这是因为:①是放回抽样,②中是“一次性”抽取,而不是“逐个”抽取,③中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样.
2.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )
A., B.,
C., D.,
解析:选A.根据简单随机抽样的定义知选A.
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是( )
A. B.
C. D.
解析:选C.简单随机抽样是等可能性抽样,每个个体被抽到的机率都是=.故选C.
4.从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则应编号为( )
A.1,2,3,4,5,6,7,8,9,10
B.-5,-4,-3,-2,-1,0,1,2,3,4
C.10,20,30,40,50,60,70,80,90,100
D.0,1,2,3,4,5,6,7,8,9
解析:选D.利用随机数表法抽样时,必须保证所编号码的位数一致.
5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )
A.8 B.11
C.162 D.10
解析:选A.若设高三学生数为x,则高一学生数为,高二学生数为+300,所以有x+++300=3 500,解得x=1 600.故高一学生数为800,因此应抽取高一学生数为 =8.
6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的是________.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数表法抽样;
⑥每个运动员被抽到的机会相等.
解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
答案:④⑤⑥
7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.
解析:=25%,因此N=120.
答案:120
8.(2019·湖南省张家界市期末联考)我国古代数学算经十书之一的《九章算术》中有一“衰分”问题“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣_____________________________人”.
解析:今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×=145(人).
答案:145
9.天津某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.
解:抽签法:
第一步:将60名大学生编号,编号为1,2,3,…,60;
第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将60个号签放入一个不透明的盒子中,充分搅匀;
第四步:从盒子中逐个抽取10个号签,并记录上面的编号;
第五步:所得号码对应的学生,就是志愿小组的成员.
随机数表法:
第一步:将60名学生编号,编号为01,02,03,…,60;
第二步:在随机数表中任选一数开始,按某一确定方向读数;
第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;
第四步:找出号码与记录的数相同的学生组成志愿小组.
10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校
相关人数
抽取人数
A
x
1
B
36
y
C
54
3
(1)求x,y;
(2)若从高校B相关人员中选2人作专题发言,应采用什么抽样方法,请写出合理的抽样过程.
解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有=?x=18,=?y=2.故x=18,y=2.
(2)总体容量和样本容量较小,所以应采用抽签法,过程如下:
第一步,将36人随机编号,号码为1,2,3,…,36;
第二步,将号码分别写在相同的纸片上,揉成团,制成号签;
第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;
第四步,把与号码相对应的人抽出,即可得到所要的样本.
[B 能力提升]
11.从某批零件中抽取50个,然后再从50个零件中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )
A.36% B.72%
C.90% D.25%
解析:选C.×100%=90%,故该产品的合格率为90%.
12.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
A.4 B.5
C.6 D.7
解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×=2,抽取的果蔬类的种数为20×=4,二者之和为6种,故选C.
13.某中学高一年级有400人,高二年级有320人,高三年级有280人,每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.
解析:因为=0.2,所以n=200.
答案:200
14.某企业共有3 200名职工,其中青、中、老年职工的比例为3∶5∶2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽取的可能性相同吗?
解:因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理.
由样本容量为400,总体容量为3 200可知,抽样比是=,所以每人被抽到的可能性相同,均为.
因为青、中、老年职工的比例是3∶5∶2,所以应分别抽取:
青年职工400×=120(人);
中年职工400×=200(人);
老年职工400×=80(人).
[C 拓展探究]
15.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有=47.5%,=10%,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.
(2)游泳组中,抽取的青年人数为200××40%=60(人),抽取的中年人数为200××50%=75(人);抽取的老年人数为200××10%=15(人).
课件36张PPT。第五章 统计与概率第五章 统计与概率差异程度较小较少抽签法随机数表法搅拌不均匀明显差别的互不重叠层比例分层抽样××√√√×本部分内容讲解结束按ESC键退出全屏播放