(新教材)人教B版数学必修第二册 5.3.2 事件之间的关系与运算(42张PPT课件+学案)

文档属性

名称 (新教材)人教B版数学必修第二册 5.3.2 事件之间的关系与运算(42张PPT课件+学案)
格式 zip
文件大小 3.8MB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2019-11-25 17:12:41

文档简介

5.3.2 事件之间的关系与运算
考点
学习目标
核心素养
事件间的相互关系
了解事件间的相互关系
数学抽象
互斥事件、对立事件
理解互斥事件、对立事件的概念
数据抽象、逻辑推理
问题导学
预习教材P98-P101的内容,思考以下问题:
1.如何理解事件A包含事件B?事件A与事件B相等?
2.什么叫做并事件?什么叫做交事件?
3.什么叫做互斥事件?什么叫做对立事件?互斥事件与对立事件的联系与区别是什么?
1.事件的关系及运算
定义
表示法
图示
包含关系
一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B)
B?A(或A__?B)
并事件
给定事件A,B,由所有A中的样本点与B中的样本点组成的事件称为A与B的和(或并)
A+B(或A∪B)
交事件
给定事件A,B,由A与B中的公共样本点组成的事件称为A与B的积(或交)
AB(或A∩B)
互斥事件
给定事件A,B,若事件A,B不能同时发生,则称A与B互斥
AB=?(或A∩B=?)
对立事件
给定样本空间Ω与事件A,由Ω中所有不属于A的样本点组成的事件称为A的对立事件记为A
P(A)+P(A)=1
2.概率加法公式
(1)如果事件A与事件B互斥,则有P(A+B)=P(A)+P(B).一般地,如果A1,A2,…,An是两两互斥的事件,则P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An). 
(2)如果事件A与事件B互为对立事件,那么A+B为必然事件,则有P(A+B)=P(A)+P(B)=1.
■名师点拨
(1)互斥事件与对立事件的区别与联系
①区别:两个事件A与B是互斥事件,包括如下三种情况:(ⅰ)若事件A发生,则事件B就不发生;(ⅱ)若事件B发生,则事件A不发生;(ⅲ)事件A,B都不发生.
而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事件,则A+B是必然事件,但若A与B是互斥事件,则A+B不一定是必然事件,亦即事件A的对立事件只有一个,而事件A的互斥事件可以有多个.
②联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.
(2)从集合的角度理解互斥事件与对立事件
①几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
(3)对互斥事件的概率加法公式的三点认识
①前提条件:事件A与B是互斥事件,如果没有这一条件,加法公式将不成立.
②特殊情况:当事件A与B是对立事件时,P(B)=1-P(A). 
③应用方法:在求某些较复杂的事件的概率时,可将其分解成一些概率较容易求的彼此互斥的事件,或与其对立的事件,化整为零,化难为易.
判断正误(正确的打“√”,错误的打“×”)
(1)互斥事件一定对立.(  )
(2)对立事件一定互斥.(  )
(3)事件A与B的和事件的概率一定大于事件A的概率.(  )
(4)事件A与B互斥,则有P(A)=1-P(B).(  )
答案:(1)× (2)√ (3)× (4)×
一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:
事件A:“恰有一件次品”;
事件B:“至少有两件次品”;
事件C:“至少有一件次品”;
事件D:“至多有一件次品”.
并给出以下结论:
①A+B=C;②D+B是必然事件;
③A+B=B;④A+D=C.
其中正确的序号是(  )
A.①② B.③④
C.①③ D.②③
解析:选A.A+B表示的事件:至少有一件次品,即事件C,所以①正确,③不正确;D+B表示的事件:至少有两件次品或至多有一件次品,包括了所有情况,所以②正确;A+D表示的事件:至多有一件次品,即事件D,所以④不正确.
(2019·广西钦州市期末考试)抽查10件产品,设“至少抽到2件次品”为事件A,则A的对立事件是(  )
A.至多抽到2件次品
B.至多抽到2件正品
C.至少抽到2件正品
D.至多抽到1件次品
解析:选D.因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2个,所以A的对立事件是抽查10件产品中次品的数目最多有1个.故选D.
某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为________.
解析:由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为P=1-0.25-0.03=0.72.
答案:0.72
互斥事件与对立事件的判断
 某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少有1名男生与全是男生;
(3)至少有1名男生与全是女生;
(4)至少有1名男生与至少有1名女生.
【解】 判断两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.
(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.
(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.
(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.
(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.
(1)包含关系、相等关系的判定
①事件的包含关系与集合的包含关系相似;
②两事件相等的实质为相同事件,即同时发生或同时不发生.
(2)判断事件是否互斥的两个步骤
第一步,确定每个事件包含的结果;
第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的. 
(3)判断事件是否对立的两个步骤
第一步,判断是互斥事件;
第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.
 判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
解:(1)是互斥事件,不是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.
(2)既是互斥事件,又是对立事件.
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,也不是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然也不可能是对立事件.
事件的运算
 盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.
求:(1)事件D与A、B是什么样的运算关系?
(2)事件C与A的交事件是什么事件?
【解】 (1)对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故D=A+B.
(2)对于事件C,可能的结果为1个红球2个白球或2个红球1个白球或3个均为红球,故CA=A.
[变条件、变问法]在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?
解:由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故A?C,B?C,E?C,所以C=A+B+E.而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以CF={1个红球2个白球,2个红球1个白球}=D.
(1)利用事件间运算的定义,列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.
(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算. 
 掷一枚骰子,下列事件:
A={出现奇数点},B={出现偶数点},C={点数小于3},D={点数大于2},E={点数是3的倍数}.
求:(1)AB,BC;
(2)A+B,B+C;
(3) D,AC,D+E.
解:(1)AB=?,BC={出现2点}.
(2)A+B={出现1或2或3或4或5或6点},
B+C={出现1或2或4或6点}.
(3)D={点数小于或等于2}={出现1或2点};
AC={出现1点};
D+E={出现1或2或4或5点}.
利用互斥、对立事件求概率
 一名射击运动员在一次射击中射中10环、9环、8环,7环,7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.
【解】 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,可知它们彼此之间互斥,且P(A)=0.24,P(B)=0.28,P(C)=0.19,P(D)=0.16,P(E)=0.13.
(1)P(射中10环或9环)=P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
(2)事件“至少射中7环”与事件E“射中7环以下”是对立事件,则P(至少射中7环)=1-P(E)=1-0.13=0.87.
所以至少射中7环的概率为0.87.
[变问法]在本例条件下,求射中环数小于8环的概率.
解:事件“射中环数小于8环”包含事件D“射中7环”与事件E“射中7环以下”两个事件,则P(射中环数小于8环)=P(D+E)=P(D)+P(E)=0.16+0.13=0.29.
互斥事件、对立事件概率的求解方法
(1)互斥事件的概率的加法公式P(A+B)=P(A)+P(B).
(2)对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.
(3)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题. 
 某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示:
人数
0
1
2
3
4
大于等于5
概率
0.1
0.16
0.3
0.2
0.2
0.04
(1)求派出医生至多2人的概率;
(2)求派出医生至少2人的概率.
解:设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
(1)“派出医生至多2人”的概率为P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)法一:“派出医生至少2人”的概率为P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
法二:“派出医生至少2人”的概率为1-P(A+B)=1-0.1-0.16=0.74.
1.掷一枚质地均匀的骰子,记事件M={出现的点数是1或2},事件N={出现的点数是2或3或4},则下列关系成立的是(  )
A.M+N={出现的点数是2}
B.MN={出现的点数是2}
C.M?N
D.M=N
解析:选B.M+N={出现的点数是1或2或3或4},MN={出现的点数是2},A不正确,B正确;当出现的点数是1时,M发生,N不发生,故C,D都不正确.
2.若A与B为互斥事件,则(  )
A.P(A)+P(B)<1      B.P(A)+P(B)>1
C.P(A)+P(B)=1 D.P(A)+P(B)≤1
解析:选D.若A与B为互斥事件,则P(A)+P(B)≤1.故选D.
3.从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是(  )
A.取出2个红球和1个白球
B.取出的3个球全是红球
C.取出的3个球中既有红球也有白球
D.取出的3个球中不止一个红球
解析:选D.从装有3个红球和2个白球的口袋中随机取出3个球可能的情况有:“3个红球”“1红2白”“2红1白”,所以事件“取出1个红球和2个白球”的对立事件是“3红或是2红1白”即“3个球不止一个红球”.故选D.
4.从一箱苹果中任取一个,如果其质量小于200克的概率为0.2,质量在[200,300]内的概率为0.5,那么质量超过300克的概率为________.
解析:设质量超过300克的概率为P,因为质量小于200克的概率为0.2, 质量在[200,300]内的概率为0.5,所以0.2+0.5+P=1,所以P=1-0.2-0.5=0.3.
答案:0.3
[A 基础达标]
1.打靶3次,事件Ai表示“击中i发”,其中i=0,1,2,3.那么A=A1+A2+A3表示(  )
A.全部击中         B.至少击中1发
C.至少击中2发 D.以上均不正确
解析:选B.A1+A2+A3所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发,故选B.
2.把红、黑、白3张纸牌随机地分给甲、乙、丙3个人,每个人分得1张, 事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件
B.两个不可能事件
C.互斥但不对立事件
D.两个概率不相等的事件
解析:选C.把红、黑、白3张纸牌随机地分给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以事件“甲分得红牌”与事件“乙分得红牌”是互斥但不对立事件.故选C.
3.甲、乙2人下棋,下成和棋的概率是,乙获胜的概率是,则甲获胜的概率是(  )
A. B.
C. D.
解析:选C.因为甲不胜的概率是两个人和棋或乙获胜,故甲胜的概率为1-=.故选C.
4.某校高三(1)班50名学生参加1 500 m体能测试,其中23人成绩为A,其余人成绩都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是(  )
A.0.14 B.0.20
C.0.40 D.0.60
解析:选A.由于成绩为A的有23人,故抽到C的概率为1--0.4=0.14.故选A.
5.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是(  )
A.[0,0.9] B.[0.1,0.9]
C.(0,0.9] D.[0,1]
解析:选A.由于事件A和B是互斥事件,则P(A+B)=P(A)+P(B)=0.1+P(B),又0≤P(A+B)≤1,所以0≤0.1+P(B)≤1,
所以0≤P(B)≤0.9.故选A.
6.若A,B为互斥事件,P(A)=0.4,P(A+B)=0.7,则P(B)=________.
解析:因为A,B为互斥事件,所以P(A+B)=P(A)+P(B), 所以P(B)=P(A+B)-P(A)=0.7-0.4=0.3.
答案:0.3
7.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则该人在一次射击中命中9环或10环的概率为________.
解析:某人在一次射击中,命中9环的概率为0.28,
命中8环的概率为0.19,不够8环的概率为0.29,
所以该人在一次射击中命中9环或10环的概率为P=1-0.19-0.29=0.52.
答案:0.52
8.某商店月收入(单位:元)在下列范围内的概率如下表所示:
月收入
[1 000,1 500)
[1 500,2 000)
[2 000,2 500)
[2 500,3 000)
概率
0.12
a
b
0.14
已知月收入在[1 000,3 000)内的概率为0.67,则月收入在[1 500,3 000)内的概率为________.
解析:记这个商店月收入在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000)范围内的事件分别为A,B,C,D,因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,
所以P(B+C+D)=0.67-P(A)=0.55.
答案:0.55
9.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘轮船去的概率;
(3)如果他乘某种交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?
解:(1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥,故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.
(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8.
(3)由于0.3+0.2=0.5,0.1+0.4=0.5,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.
10.某省是高中新课程改革试验省份之一,按照规定每个学生都要参加学业水平考试,全部及格才能毕业,不及格的可进行补考.某校有50名同学参加物理、化学、生物学业水平测试补考,已知只补考物理的概率为,只补考化学的概率为,只补考生物的概率为.随机选出一名同学,求他不止补考一门的概率.
解:设“不止补考一门”为事件E,“只补考一门”为事件F,“只补考物理”为事件A,则P(A)=,“只补考化学”为事件B,则P(B)=,“只补考生物”为事件C,则P(C)=.这三个事件为互斥事件,所以P(F)=P(A+B+C)=P(A)+P(B)+P(C)==0.6.又因为事件E和事件F互为对立事件.所以P(E)=1-P(F)=1-0.6=0.4.即随机选出一名同学,他不止补考一门的概率为0.4.
[B 能力提升]
11.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列结论正确的是(  )
A.F与G互斥
B.E与G互斥但不对立
C.E,F,G任意两个事件均互斥
D.E与G对立
解析:选D.由题意得事件E与事件F不可能同时发生,是互斥事件;
事件E与事件G不可能同时发生,是互斥事件;
当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件.故A,C错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以B错误,D正确.
12.掷一枚骰子的试验中,出现各点的概率为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则在一次试验中,事件A+B(B表示事件B的对立事件)发生的概率为(  )
A. B.
C. D.
解析:选C.由题意知,表示“大于或等于5的点数出现”,事件A与事件互斥,由概率的加法计算公式可得P(A+)=P(A)+P()=+==.
13.某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率,则当天商店不进货的概率为________.
解析:商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算两事件发生的频率,将其视作概率,利用概率加法公式可解.
记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则P(C)=P(A)+P(B)=+=.
答案:
14.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率.
解:(1)设“厨余垃圾”箱里厨余垃圾量为m吨,厨余垃圾总量为n吨,则m=400,n=400+100+100=600.
所以厨余垃圾投放正确的概率约为==.
(2)设“生活垃圾投放错误”为事件A,则事件表示“生活垃圾投放正确”,从而P()==0.7,
所以P(A)=1-P()=1-0.7=0.3.
[C 拓展探究]
15.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6×450-4×450=900;
若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;
若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.
所以Y的所有可能值为900,300,-100.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.
课件42张PPT。第五章 统计与概率第五章 统计与概率一定发生和并积交不能同时发生1×√××本部分内容讲解结束按ESC键退出全屏播放[A 基础达标]
1.打靶3次,事件Ai表示“击中i发”,其中i=0,1,2,3.那么A=A1+A2+A3表示(  )
A.全部击中         B.至少击中1发
C.至少击中2发 D.以上均不正确
解析:选B.A1+A2+A3所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发,故选B.
2.把红、黑、白3张纸牌随机地分给甲、乙、丙3个人,每个人分得1张, 事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件
B.两个不可能事件
C.互斥但不对立事件
D.两个概率不相等的事件
解析:选C.把红、黑、白3张纸牌随机地分给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以事件“甲分得红牌”与事件“乙分得红牌”是互斥但不对立事件.故选C.
3.甲、乙2人下棋,下成和棋的概率是,乙获胜的概率是,则甲获胜的概率是(  )
A. B.
C. D.
解析:选C.因为甲不胜的概率是两个人和棋或乙获胜,故甲胜的概率为1-=.故选C.
4.某校高三(1)班50名学生参加1 500 m体能测试,其中23人成绩为A,其余人成绩都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是(  )
A.0.14 B.0.20
C.0.40 D.0.60
解析:选A.由于成绩为A的有23人,故抽到C的概率为1--0.4=0.14.故选A.
5.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是(  )
A.[0,0.9] B.[0.1,0.9]
C.(0,0.9] D.[0,1]
解析:选A.由于事件A和B是互斥事件,则P(A+B)=P(A)+P(B)=0.1+P(B),又0≤P(A+B)≤1,所以0≤0.1+P(B)≤1,
所以0≤P(B)≤0.9.故选A.
6.若A,B为互斥事件,P(A)=0.4,P(A+B)=0.7,则P(B)=________.
解析:因为A,B为互斥事件,所以P(A+B)=P(A)+P(B), 所以P(B)=P(A+B)-P(A)=0.7-0.4=0.3.
答案:0.3
7.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则该人在一次射击中命中9环或10环的概率为________.
解析:某人在一次射击中,命中9环的概率为0.28,
命中8环的概率为0.19,不够8环的概率为0.29,
所以该人在一次射击中命中9环或10环的概率为P=1-0.19-0.29=0.52.
答案:0.52
8.某商店月收入(单位:元)在下列范围内的概率如下表所示:
月收入
[1 000,1 500)
[1 500,2 000)
[2 000,2 500)
[2 500,3 000)
概率
0.12
a
b
0.14
已知月收入在[1 000,3 000)内的概率为0.67,则月收入在[1 500,3 000)内的概率为________.
解析:记这个商店月收入在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000)范围内的事件分别为A,B,C,D,因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,
所以P(B+C+D)=0.67-P(A)=0.55.
答案:0.55
9.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘轮船去的概率;
(3)如果他乘某种交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?
解:(1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥,故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.
(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8.
(3)由于0.3+0.2=0.5,0.1+0.4=0.5,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.
10.某省是高中新课程改革试验省份之一,按照规定每个学生都要参加学业水平考试,全部及格才能毕业,不及格的可进行补考.某校有50名同学参加物理、化学、生物学业水平测试补考,已知只补考物理的概率为,只补考化学的概率为,只补考生物的概率为.随机选出一名同学,求他不止补考一门的概率.
解:设“不止补考一门”为事件E,“只补考一门”为事件F,“只补考物理”为事件A,则P(A)=,“只补考化学”为事件B,则P(B)=,“只补考生物”为事件C,则P(C)=.这三个事件为互斥事件,所以P(F)=P(A+B+C)=P(A)+P(B)+P(C)==0.6.又因为事件E和事件F互为对立事件.所以P(E)=1-P(F)=1-0.6=0.4.即随机选出一名同学,他不止补考一门的概率为0.4.
[B 能力提升]
11.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列结论正确的是(  )
A.F与G互斥
B.E与G互斥但不对立
C.E,F,G任意两个事件均互斥
D.E与G对立
解析:选D.由题意得事件E与事件F不可能同时发生,是互斥事件;
事件E与事件G不可能同时发生,是互斥事件;
当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件.故A,C错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以B错误,D正确.
12.掷一枚骰子的试验中,出现各点的概率为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则在一次试验中,事件A+ (表示事件B的对立事件)发生的概率为(  )
A. B.
C. D.
解析:选C.由题意知,表示“大于或等于5的点数出现”,事件A与事件互斥,由概率的加法计算公式可得P(A+)=P(A)+P()=+==.
13.某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率,则当天商店不进货的概率为________.
解析:商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算两事件发生的频率,将其视作概率,利用概率加法公式可解.
记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则P(C)=P(A)+P(B)=+=.
答案:
14.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率.
解:(1)设“厨余垃圾”箱里厨余垃圾量为m吨,厨余垃圾总量为n吨,则m=400,n=400+100+100=600.
所以厨余垃圾投放正确的概率约为==.
(2)设“生活垃圾投放错误”为事件A,则事件表示“生活垃圾投放正确”,从而P()==0.7,
所以P(A)=1-P()=1-0.7=0.3.
[C 拓展探究]
15.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6×450-4×450=900;
若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;
若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.
所以Y的所有可能值为900,300,-100.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.