人教版七年级上数学教学讲义,复习补习资料(含知识讲解,巩固练习):13【基础】《有理数》全章复习与巩固含答案

文档属性

名称 人教版七年级上数学教学讲义,复习补习资料(含知识讲解,巩固练习):13【基础】《有理数》全章复习与巩固含答案
格式 zip
文件大小 509.9KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-11-25 21:53:59

图片预览

文档简介

《有理数》全章复习与巩固(基础)
【学习目标】
1.理解正负数的意义,掌握有理数的概念. 2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.
4. 理解科学记数法及近似数的相关概念并能灵活应用.
5. 体会数学知识中体现的一些数学思想.
【知识网络】
【要点梳理】
要点一、有理数的相关概念
1.有理数的分类:
(1)按定义分类: (2)按性质分类:
要点诠释:(1)用正数、负数表示相反意义的量;
(2)有理数“0”的作用:
作用
举例
表示数的性质
0是自然数、是有理数
表示没有
3个苹果用+3表示,没有苹果用0表示
表示某种状态
表示冰点
表示正数与负数的界点
0非正非负,是一个中性数
2.数轴:规定了原点、正方向和单位长度的直线.
要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.
(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.
3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.
要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.
(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.
(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.
4.绝对值:
(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作.
(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.
要点二、有理数的运算
1 .法则:
(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.
(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .
(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.
(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) .
(5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.
  (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
要点诠释:“奇负偶正”口诀的应用:
(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,
-[+(-3)]=3.
(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.
(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , .
2.运算律:
(1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba;
(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc)
(3)分配律:a(b+c)=ab+ac
要点三、有理数的大小比较
比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.
要点四、科学记数法、近似数及精确度
1.科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=.
2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.
要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.
3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.
要点诠释:
(1)精确度是指近似数与准确数的接近程度.
(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到米,说明结果与实际数相差不超过米,而有效数字往往用来比较几个近似数哪个更精确些.
【典型例题】
类型一、有理数相关概念
1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.
【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1
【解析】根据定义,把符合条件的有理数写全.
【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.
举一反三:
【有理数专题复习 概念的理解与应用】
【变式】(1)的倒数是  ;的相反数是   ;的绝对值是   .
-(-8)的相反数是 ;的相反数的倒数是_____.
(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .
(3) 上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.
(4) 若a、b互为相反数,c、d互为倒数,则____ .
(5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数3.5万精确到 位, 3.4030×105精确到千位是 .
【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3;
(5)万分;千;千;3.40×105
2.(2019春?射洪县月考)如果|x+3|+|y﹣4|=0,求x+2y的值.
【思路点拨】根据非负数的性质,可求出x、y的值,然后将x、y的值代入代数式化简计算即可.
【答案与解析】
解:∵|x+3|+|y﹣4|=0,
∴x+3=0,y﹣4=0,
解得,x=﹣3,y=4,
x+2y=﹣3+4×2=5.
【总结升华】本题考查了绝对值的性质和非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.
3.在下列两数之间填上适当的不等号:
________.
【思路点拨】根据“a-b>0,a-b=0,a-b<0分别得到a>b,a=b,a<b”来比较两数的大小.
【答案】<
【解析】法一:作差法
由于,所以
法二:倒数比较法:因为
所以
【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.
举一反三:
【变式】比较大小:(1)________0.001; (2)________-0.68
【答案】(1)< (2)>
类型二、有理数的运算
4.(2019?厦门)计算:.
【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.
【答案与解析】
解:原式=10+8×﹣2×5
=10+2﹣10
=2.
【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
举一反三: 【变式】(2019秋?埇桥区校级期中)﹣33×(﹣5)+16÷(﹣2)3﹣|﹣4×5|+(﹣0.625)2.
【答案】
解:原式=﹣27×(﹣5)+16÷(﹣8)﹣|﹣20|+02
=135﹣2﹣20+0
=113.
类型三、数学思想在本章中的应用
 5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.
A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a
    (2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.
    (3)转化思想:计算:
【答案与解析】
解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.
所以正确选项为:D.
(2)因为| x|=5,所以x为-5或5
因为|y|=3,所以y为3或-3.
当x=5,y=3时,x-y=5-3=2
当x=5,y=-3时,x-y=5-(-3)=8
当x=-5,y=3时,x-y=-5-3=-8
当x=-5,y=-3时,x-y=-5-(-3)=-2
故(x-y)的值为±2或±8
(3)原式=
【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.
举一反三: 【变式】若a是有理数,|a|-a能不能是负数?为什么?
【答案】解:当a>0时,|a|-a=a-a=0;
    当a=0时,|a|-a=0-0=0;
    当a<0时,|a|-a=-a-a=-2a>0.
   所以,对于任何有理数a,|a|-a都不会是负数.
类型四、规律探索
6.将1,,,,,,…,按一定规律排列如下:
请你写出第20行从左至右第10个数是________.
【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.
【答案】
【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是.
【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.
【巩固练习】
一、选择题 1.(2019?益阳)的相反数是(  )
A.2019 B.﹣2019 C. D.
2.(2019?吉林)若等式0□1=﹣1成立,则□内的运算符号为(  )
  A.+ B. ﹣ C. × D. ÷
3. 在-(-2),-|-7|,-|+1|,|-中,负数的个数是 ( )
   A.1个 B.2个 C.3个 D.4个
4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示(  )
A.2.02×人   B.202×人   C.2.02×人 D.2.02×人
5.若-1 A.a26.在数轴上距2.5有3.5个单位长度的点所表示的数是( )
A.6 B.-6 C.-1 D.-1或6
7.a,b两数在数轴上的位置如图,则下列正确的是( )

A. a+b>0 B. ab>0 C.>0 D.a-b>0
8.已知有理数,在数轴上对应的两点分别是A,B.请你将具体数值代入,,充分实验验证:对于任意有理数,,计算A, B两点之间的距离正确的公式一定是( )
A. B. C. D.
二、 填空题
9.(2019?东阳市模拟)一运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记作   m.
10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.
11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米,精确到千亿位为 千米.
12.,则; ,则.
13.已知实数a , 在数轴上如下图所示,则= .

14.若|a-2|+|b+3|=0,则3a+2b= .
15.= .
16.(2019春?江苏校级期末)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…你从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32019的个位数字是   .
三、 解答题
17.计算:
(1)
(2)
(3)21-49.5+10.2-2-3.5+19
(4)
18.(2019春?万州区期末)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结来如表所示:
售出件数
7
6
7
8
2
售价(元)
+5
+1
0
﹣2
﹣5
请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?
19.某地的气象观测资料表明,高度每增加1km,气温大约下降6℃,若该地地面温度为18℃,高空某处气温为-48℃,求此处的高度.
20.先观察下列各式:
;;;…;,根据以上观察,计算:…的值.
【答案与解析】
一、选择题 1.【答案】C
【解析】解:∵﹣与只有符号不同,
∴﹣的相反数是.
故选:C.
2.【答案】B.
3.【答案】C
【解析】负数有三个,分别是:-|-7|,-|+1|,
4.【答案】A
5.【答案】C
【解析】由-16.【答案】D
【解析】2.5+3.5=6, 2.5-3.5=-1
7.【答案】D
【解析】由图可知,a、b异号,且b的绝对值较大.
8.【答案】D
【解析】按正负对,分类讨论.
二、填空题 9.【答案】:﹣3.
【解析】运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记﹣3米.
10.【答案】水位无变化
11.【答案】1.02×1014,1.020×1014
12.【答案】  
13.【答案】1-a
  【解析】由图可知:a-1<0,所以 │a-1│=-(a-1)=1- a.
14.【答案】0
【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0;
15.【答案】-5
  【解析】 .
16.【答案】1
【解析】解:31=3,32=9,33=27,34=81,
35=243,36=729,37=2187,……,
∵2019÷4=504,
∴32019的个位数字与第4个数的个数数相同,是1.
故答案为:1.
三、解答题 17.【解析】
解: (1) 原式
(2) 原式
(3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8
(4) 原式=

18.【解析】
解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)
=735+606+700+784+190
=3015,
30×82=2460(元),
3015﹣2460=555(元),
答:共赚了555元.
19.【解析】解:
则此高空比地面高11km,又地面高度应为0,所以此高空处的高度为11 km.
20.【解析】解:原式