第十八章 平行四边形
18.2.1 矩形
第1课时 矩形的性质
学习目标:1.理解矩形的概念,知道矩形与平行四边形的区别与联系;
2.会证明矩形的性质,会用矩形的性质解决简单的问题;
3.掌握直角三角形斜边中线的性质,并会简单的运用.
重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.
难点:会证明矩形的性质,会用矩形的性质解决简单的问题.
一、知识回顾
1.平行四边形是什么?它有哪些性质?
你还记得长方形是什么吗?
新知预习
1.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°时,这是我们学过的哪个图形?
2.自主学习:
(1)矩形的定义:有一个角是直角的平行四边形叫做_________,也就是长方形.
(2)矩形是特殊的平行四边形,平行四边形_________是矩形.
三、自学自测
1.矩形是常见的图形,你能举出一些生活中的实例吗?
2.矩形是特殊的平行四边形,你能根据平行四边形的性质,说出3条矩形的性质吗?
四、我的疑惑
____________________________________________________________
要点探究
探究点1:矩形的性质
思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
活动 准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角度数和对角线的长度,并记录测量结果.
AC
BD
∠BAD
∠ADC
∠ABC
∠BCD
橡皮擦
课本
桌子
根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是_________.
猜想2 矩形的对角线__________.
证一证 如图,四边形ABCD是矩形,∠B=90°.
求证: ∠B=∠C=∠D=∠A=90°.
证明:∵四边形ABCD是矩形,
∴∠B____∠D,∠C____∠A, AB____DC.
∴∠B+∠C=_____°.
又∵∠B = 90°,
∴∠C =____°.
∴∠B=∠C=∠D=∠A =_____°.
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.
求证:AC=DB.
证明:∵四边形ABCD是矩形,
∴AB____DC,∠ABC=∠DCB=_____°,
在△ABC和△DCB中,
∵AB=DC,∠ABC=∠DCB,BC= CB,
∴△ABC____△DCB.
∴AC____DB.
思考 请同学们拿出准备好的矩形纸片,折一折,观察并思考.??矩形是不是轴对称图形?如果是,那么对称轴有几条?
要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:
1.矩形的四个角都是_______.矩形的对角线________.
2.矩形是_________图形,它有_____条对称轴.
几何语言描述:
在矩形ABCD中,对角线AC与DB相交于点O.
∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.
典例精析
例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.
例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
针对训练
1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是 ( )
A.AB∥DC B.AC=BD
C.AC⊥BD D.OA=OB
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
探究点2:直角三角形斜边上的中线的性质
活动 如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.
问题 Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?
猜想 直角三角形斜边上的中线等于斜边的________.
证一证 如图,在Rt△ABC中,∠ABC=90°,BO是AC上的中线.
证明:延长BO至D, 使OD=BO,连接AD、DC.
∵AO=OC, BO=OD,
∴四边形ABCD是____________.
∵∠ABC=90°,
∴平行四边形ABCD是________,
∴AC_______BD,
∴BO=_____BD=_____AC.
要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________.
典例精析
例3 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)若AB=10,AC=8,求四边形AEDF的周长;
(2)求证:EF垂直平分AD.
方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
例4 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
针对训练
如图,在△ABC中,∠ABC = 90°,BD是斜边AC上的中线.
(1)若BD=3cm,则AC =_____cm;
(2)若∠C = 30° ,AB = 5cm,则AC =_____cm, BD =_____cm.
二、课堂小结
内 容
矩形的概念
有一个角是直角的平行四边形叫做矩形
矩形的性质
具有平行四边形的一切性质;
四个内角都是直角,两条对角线互相平分且相等
具有2条对称轴的轴对称图形
直角三角形的性质
直角三角形斜边上的中线等于斜边的一半
1.矩形具有而一般平行四边形不具有的性质是 ( )
A.对角线相等 B.对边相等
C.对角相等 D.对角线互相平分
2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( )
A.13 B.6 C.6.5 D.不能确定
3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是 ( )
A.20 ° B.40° C.80 ° D.10°
4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm.
5.如图,△ABC中,E在AC上,且BE⊥AC.D为AB中点,若DE=5,AE=8,则BE的长为______.
6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.
能力提升
7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
第十八章 平行四边形
18.2.1 矩形
第2课时 矩形的判定
学习目标:1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;
2.能应用矩形的判定解决简单的证明题和计算题.
重点:经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.
难点:能应用矩形的判定解决简单的证明题和计算题.
一、知识回顾
1.矩形的定义是什么?
2.矩形有哪些性质?
要点探究
探究点1:二次根式的乘法
想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?
2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?
对角线_______的__________________是矩形.
证一证 已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.
求证:□ABCD是矩形.
证明:∵AB = DC,BC = CB,AC = DB,
∴ △ABC______△DCB ,
∴∠ABC______∠DCB.
∵AB∥CD,
∴∠ABC + ∠DCB =______°,
∴ ∠ABC = _______°,
∴ □ ABCD是__________.
思考 数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?
要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.
几何语言描述:在平行四边形ABCD中,∵AC=BD,
∴平行四边形ABCD是矩形.
典例精析
例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.
针对训练
1.如图,在?ABCD中,AC和BD相交于点O,则下面条件能判定?ABCD是矩形的是 ( )
A.AC=BD
B.AC=BC
C.AD=BC
D.AB=AD
2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?
探究点2:有三个角是直角的四边形是矩形
想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立 吗?
2.至少有几个角是直角的四边形是矩形?
猜测:有_____个角是直角的四边形是矩形.
证一证 已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
证明:∵ ∠A=∠B=∠C=90°,
∴∠A+∠B=_______°,∠B+∠C=_______°,
∴AD_____BC,AB_____CD.
∴四边形ABCD是______________,
∴四边形ABCD是________.
思考 一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?
要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.
几何语言描述:在四边形ABCD中,∵ ∠A=∠B=∠C=90°,
∴四边形ABCD是矩形.
典例精析
例3 如图, □?ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形.
例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.
针对训练
在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是 ( )
A.测量对角线是否相等
B.测量两组对边是否分别相等
C.测量一组对角是否都为直角
D.测量其中三个角是否都为直角
二、课堂小结
内 容
矩形的判定
定义:有一个角是直角的平行四边形是矩形.
判定定理:
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
1.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、 ∠MCA、 ∠ ACN、∠CAF的平分线,则四边形ABCD是 ( )
A.梯形 B.平行四边形 C.矩形 D.不能确定
2.下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有三个角都相等的四边形是矩形;
(5)有三个角是直角的四边形是矩形;
(6)四个角都相等的四边形是矩形;
(7)对角线相等,且有一个角是直角的四边形是矩形;
(8)一组对角互补的平行四边形是矩形.
3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.
4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.
如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.
能力提升
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A
出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
经过多长时间,四边形PQCD是平行四边形?
经过多长时间,四边形PQBA是矩形?