人教版数学六年级下册学案:3 圆柱与圆锥(5份打包含答案)

文档属性

名称 人教版数学六年级下册学案:3 圆柱与圆锥(5份打包含答案)
格式 zip
文件大小 231.6KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-12-02 21:25:35

文档简介

1 圆柱的认识
项目
内  容
1.长方体有(  )个面,(  )条棱,(  )个顶点。相对的面的面积(  ),相对的棱的长度(  )。
2.像茶叶罐、蜡烛、钢管等物体的形状都是(  )的。
3.圆柱的组成。
4.圆柱的侧面。
圆柱的侧面展开后是(  )形。把展开的长方形纸重新包上,长方形的长等于圆柱的(    ),宽等于(    )。
5.通过预习,我知道了一个圆柱由两个(  )面和一个(  )面组成,两个(  )面积相等。圆柱的(  )面展开后是一个长方形,长方形的长等于圆柱底面的(  ),宽等于圆柱的(  )。
6.我还有( )不明白。
7.指出下面圆柱的底面、侧面和高。
8.一个长方形长5厘米,宽4厘米,如果以宽为轴旋转一周得到一个立体图形,得到的是(  )。
温馨
提示
知识准备:长方体的特征及圆的相关知识。
学具准备:圆柱形纸筒。
参考答案
1.6 12 8 相等 相等
 2.圆柱形 
3.略
4.长方 底面周长 圆柱的高
5.底 侧 底面 侧 周长 高
6.略 
7.略 
8.圆柱
2 圆柱的表面积
项目
内  容
1.填一填。
2.圆柱的表面积。
把圆柱展开。
圆柱的表面积=圆柱的(  )+两个(  )的面积。
3.一顶圆柱形厨师帽,高30 cm,帽顶直径20 cm,做这样的一顶帽子至少需要用多少面料?(得数保留整十数)
求做这样的一顶帽子需要用多少面料,想帽子的侧面积是多少,列式为(    ),帽顶的面积是多少,列式为(    ),至少需要的面料为(    )。
4.通过预习,我知道了圆柱的表面积指的是圆柱的(  )和两个(   )的面积之(  )。
5.我还有( )不明白。
6.一个圆柱的底面直径是3厘米,高是4厘米,它的表面积是多少?
7.一种圆柱形饮料的底面直径是8厘米,高是15 厘米,它的表面积是多少?
温馨
提示
知识准备:长方体的表面积计算方法,圆的周长及面积公式。
学具准备:圆柱形纸筒。
参考答案
1.略 
2.侧面积 底面 
3.3.14×20×30
3.14×(20÷2)2 2200 cm2
4.侧面积 底面 和 
5.略
6.51.81平方厘米 
7.477.28平方厘米
3 圆柱的体积
项目
内  容
1.(         )叫做物体的体积。
2.V长方体=(  )      V正方体=(  )
统一的公式表示为V=(  )。
3.圆柱的体积公式。
长方体的底面积等于圆柱的(  ),高等于圆柱的(  ),圆柱的体积计算公式是(    )。
4.一个杯子的内直径为8 cm,高为10 cm,一袋牛奶有498 mL,这个杯子能装下这袋牛奶吗?
先算杯子的底面积,列式为(          ),再算出杯子的容积,列式为(      ),结果为(  )。这个杯子(  )装下这袋奶。
5.通过预习,我知道了把圆柱转化为(  )就能很方便地计算出圆柱的体积。圆柱的体积=(  )×(  ),用字母表示是(  )。如果知道圆柱的底面半径r和高h,圆柱的体积还可以写成( )。
6.圆柱形容器容积的计算方法和圆柱(  )的计算方法相同。
7.求圆柱的体积。
(1)底面积9.42平方米,高2米。
(2)底面半径2分米,高5分米。
8.一根圆柱形木料的底面积为75 cm2,长为90 cm。它的体积是多少?
温馨
提示
知识准备:长方体和正方体的体积计算方法。
学具准备:圆柱形纸筒。
参考答案
1.物体所占空间的大小 
2.abh a3 Sh
3.底面积 高 V=Sh
4.3.14×(8÷2)2=50.24(cm2)
50.24×10=502.4(cm3) 502.4mL 能
5.长方体 底面积 高 V=Sh V=πr2h
6.体积
7.(1)18.84立方米 (2)62.8立方分米
8.6750 cm3
4 圆锥的认识
项目
内  容
1.圆柱有(  )个底面,(  )个侧面,(  )个底面是大小一样的圆,侧面是一个(  )面。
2.圆柱两个底面之间的距离叫做(  ),圆柱有(  )条高。圆柱的侧面沿高剪开是一个(  )形。
3.像漏斗、沙堆、陀螺等物体的形状都是(  )形的。
4.圆锥的特征。
圆锥有(  )个顶点,(  )个底面,(  )个侧面。圆锥的底面是一个(  ),侧面是一个(  ),展开后是一个(  )形。
5.圆锥的高。
从圆锥的(  )到底面圆心的距离是圆锥的高。圆锥只有(  )条高。
6.通过预习,我知道了圆锥有一个(  ),一个(  ),一个(  )。(  )是一个圆,(  )展开后是一个扇形。圆锥只有(  )条高。
7.我还有( )不明白。
8.在圆锥的下面画“△”,在圆柱的下面画“□”。
温馨
提示
知识准备:圆和圆柱的相关知识。
学具准备:圆锥形纸筒。
参考答案
1.两 一 两 曲 
2.高 无数 长方
3.圆锥 
4.一 一 一 圆 曲面 扇
5.顶点 一
6.顶点 底面 侧面 底面 侧面 一
7.略 
8.(□)( )( )(□)(△)
5 圆锥的体积
项目
内  容
1.圆柱的体积公式用字母表示为(     )和(      )。
2.圆锥的体积公式。
(1)准备好等底等高的圆柱、圆锥形容器和水。把圆柱装满水,再往圆锥形容器里倒,正好倒了(  )次。把圆锥形容器里装满水,再往圆柱里倒,(  )次能倒满。
(2)实验发现,等底等高的圆锥和圆柱,圆锥的体积是圆柱的(  )。用字母表示它们的关系是V圆锥=(  )V圆柱 =(  )Sh。
3.工地上有一堆沙子,近似于一个圆锥,底面直径为4m,高为1.5m,这堆沙子的体积大约是多少?(得数保留两位小数)
要想求这堆沙子的体积,先求出沙堆的底面积。沙堆的底面积列式为(    ),沙堆的体积列式为(    )。
4.通过预习,我知道了等底等高的圆柱和圆锥,圆柱的体积是圆锥的(  )倍,圆锥的体积是圆柱的(  )。
5.求圆锥的体积,如果已知圆锥的底面积和高,可以直接用公式求体积;如果给的是底面半径、直径或周长和高,就要先求出(    ),再运用公式求体积。
6.一个圆锥形零件的底面积是19 cm2,高是12 cm。这个零件的体积是多少?
7.一堆煤堆成圆锥形,底面半径是1.5 m,高是1.1 m。这堆煤的体积是多少?
温馨
提示
知识准备:圆柱体积的计算方法。
学具准备:圆锥形纸筒。
参考答案
1.V=Sh V=πr2h
2.(1)3 3 (2)13 13 13
3.3.14×422=12.56(m2)
12.56×1.5×13=6.28(m3)
4.3 13
5.底面积 
6.76 cm3 
7.2.5905 m3