(共19张PPT)
多项式与多项式是如何相乘的?
(x + 3)( x+5)
=x2
+5x
+3x
+15
=x2
+8x
+15.
(a+b)(m+n)
=am
+an
+bm
+bn
情景导入
从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”
张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.
探究发现
相等吗?
原来
现在
a2
(a+5)(a-5)
面积变了吗?
①(x + 1)( x-1);
②(m + 2)( m-2);
③(2m+ 1)(2m-1);
④(5y + z)(5y-z).
计算下列多项式的积,你能发现什么规律?
算一算:看谁算得又快又准.
②(m+ 2)( m-2)=m2 -22
③(2m+ 1)( 2m-1)=4m2 - 12
④(5y + z)(5y-z)= 25y2 - z2
①(x +1)( x-1)=x2 - 1,
想一想:这些计算结果有什么特点?
x2 - 12
m2-22
(2m)2 - 12
(5y)2 - z2
(a+b)(a?b)=
a2?b2
两数和与这两数差的积,等于这两数的平方差.
1.(a – b ) ( a + b) = a2 - b2
2.(b + a )( -b + a ) = a2 - b2
平 方 差 公 式
注:这里的a、b可以是两个单项式也可以是两个多项式等.
(a+b)(a-b)=(a)2-(b)2
(相同项)?-(相反项)?
练一练:口答下列各题:
(l)(-a+b)(a+b)=??_________.
(2)(a-b)(b+a)= __________.
(3)(-a-b)(-a+b)= ________.
(4)(a-b)(-a-b)= _________.
a2-b2
a2-b2
b2-a2
b2-a2
(1+x)(1-x)
(-3+a)(-3-a)
(0.3x-1)(1+0.3x)
(1+a)(-1+a)
填一填:
a
b
a2-b2
1
x
-3
a
12-x2
(-3)2-a2
a
1
a2-12
0.3x
1
( 0.3x)2-12
(a-b)(a+b)
(a + b ) ( a – b ) = a2 - b2
例1 计算:(-x+2y)(-x-2y).
解:原式= (-x)2 - (2y)2
=x2 - 4y2.
注意:1.先把要计算的式子与公式对照;
2.哪个是a ?哪个是b?
例2 运用平方差公式计算:
(1) (3x+2 )( 3x-2 ) ;
(2) (b+2a)(2a-b).
解:(1)(3x+2)(3x-2)
=(3x)2-22
=9x2-4;
(2)(b+2a)(2a-b)
=(2a+b)(2a-b)
=(2a)2-b2
=4a2-b2.
例3 计算:
(1) 102×98;
(2) (y+2) (y-2) – (y-1) (y+5) .
解: (1) 102×98
(2)(y+2)(y-2)- (y-1)(y+5)
= 1002-22
=10000 – 4
=(100+2)(100-2)
=9996
= y2-22-(y2+4y-5)
= y2-4-y2-4y+5
= - 4y + 1.
当堂练习
1.下面各式的计算对不对?如果不对,应当怎样改正?
(1)(x+2)(x-2)=x2-2
(2)(-3a-2)(3a-2)=9a2-4
不对
改正:
(1)(x+2)(x-2)=x2-4
不对
改正方法1:
(-3a-2)(3a-2)=-[(3a+2)(3a-2)]
=-(9a2-4)
=-9a2+4
改正方法2:
(-3a-2)(3a-2)=(-2-3a)(-2+3a)
=(-2)2-(3a)2
=4-9a2
(1)(a+3b)(a- 3b);
=4a2-9;
=4x4-y2.
=(2a+3)(2a-3)
=a2-9b2 ;
=(2a)2-32
=(-2x2 )2-y2
=(50+1)(50-1)
=502-12
=2500-1
=2499;
=(9x2-16)
-(6x2+5x -6)
=3x2-5x- 10.
=(a)2-(3b)2
(2)(3+2a)(-3+2a);
(3)51×49;
(5)(3x+4)(3x-4)-(2x+3)(3x-2).
(4)(-2x2-y)(-2x2+y);
2.利用平方差公式计算:
3.计算: 20152 - 2014×2016.
解:
20152 - 2014×2016
= 20152 - (2015-1)(2015+1)
= 20152
- (20152-12 )
= 20152
- 20152+12
=1
4.利用平方差公式计算:
(a-2)(a+2)(a2 + 4)
解:原式=(a2-4)(a2+4)
=a4-16.
5.化简:
(x-y)(x+y)(x2+y2)(x4+y4).
解:原式=(x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)
=x8-y8.
课堂小结
平方差公式
内容
注意
两个数的和与这两个数的差的积,等于这两个数的平方差
1.符号表示:(a+b)(a-b)=a2-b2
2.紧紧抓住 “一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;对于不能直接应用公式的,可能要经过变形才可以应用